Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(2): 1095-1114, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38270084

RESUMEN

Peripheral nerve injury poses a threat to the mobility and sensitivity of a nerve, thereby leading to permanent function loss due to the low regenerative capacity of mature neurons. To date, the most widely clinically applied approach to bridging nerve injuries is autologous nerve grafting, which faces challenges such as donor site morbidity, donor shortages, and the necessity of a second surgery. An effective therapeutic strategy is urgently needed worldwide to overcome the current limitations. Herein, a magnetic nerve guidance conduit (NGC) based on biocompatible biodegradable poly(3-hydroxybutyrate) (PHB) and 8 wt % of magnetite nanoparticles modified by citric acid (Fe3O4-CA) was fabricated by electrospinning. The crystalline structure of NGCs was studied by X-ray diffraction, which indicated an enlarged ß-phase of PHB in the composite conduit compared to a pure PHB conduit. Tensile tests revealed greater ductility of PHB/Fe3O4-CA: the composite conduit has Young's modulus of 221 ± 52 MPa and an elongation at break of 28.6 ± 2.9%, comparable to clinical materials. Saturation magnetization (σs) of Fe3O4-CA and PHB/Fe3O4-CA is 61.88 ± 0.29 and 7.44 ± 0.07 emu/g, respectively. The water contact angle of the PHB/Fe3O4-CA conduit is lower as compared to pure PHB, while surface free energy (σ) is significantly higher, which was attributed to higher surface roughness and an amorphous phase as well as possible PHB/Fe3O4-CA interface interactions. In vitro, the conduits supported the proliferation of rat mesenchymal stem cells (rMSCs) and SH-SY5Y cells in a low-frequency magnetic field (0.67 Hz, 68 mT). In vivo, the conduits were used to bridge damaged sciatic nerves in rats; pure PHB and composite PHB/Fe3O4-CA conduits did not cause acute inflammation and performed a barrier function, which promotes nerve regeneration. Thus, these conduits are promising as implants for the regeneration of peripheral nerves.


Asunto(s)
Nanopartículas de Magnetita , Neuroblastoma , Traumatismos de los Nervios Periféricos , Polihidroxibutiratos , Ratas , Humanos , Animales , Traumatismos de los Nervios Periféricos/terapia , Ácido 3-Hidroxibutírico/farmacología , Materiales Biocompatibles/farmacología , Nanopartículas de Magnetita/uso terapéutico , Hidroxibutiratos/farmacología , Regeneración Nerviosa/fisiología
2.
Polymers (Basel) ; 14(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35160518

RESUMEN

Novel hybrid magnetoactive composite scaffolds based on poly(3-hydroxybutyrate) (PHB), gelatin, and magnetite (Fe3O4) were fabricated by electrospinning. The morphology, structure, phase composition, and magnetic properties of composite scaffolds were studied. Fabrication procedures of PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the formation of both core-shell and ribbon-shaped structure of the fibers. In case of hybrid PHB/gelatin/Fe3O4 scaffolds submicron-sized Fe3O4 particles were observed in the surface layers of the fibers. The X-ray photoelectron spectroscopy results allowed the presence of gelatin on the fiber surface (N/C ratio-0.11) to be revealed. Incubation of the composite scaffolds in saline for 3 h decreased the amount of gelatin on the surface by more than ~75%. The differential scanning calorimetry results obtained for pure PHB scaffolds revealed a characteristic melting peak at 177.5 °C. The presence of gelatin in PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the decrease in melting temperature to 168-169 °C in comparison with pure PHB scaffolds due to the core-shell structure of the fibers. Hybrid scaffolds also demonstrated a decrease in crystallinity from 52.3% (PHB) to 16.9% (PHB/gelatin) and 9.2% (PHB/gelatin/Fe3O4). All the prepared scaffolds were non-toxic and saturation magnetization of the composite scaffolds with magnetite was 3.27 ± 0.22 emu/g, which makes them prospective candidates for usage in biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA