Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174408, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972407

RESUMEN

Big data have become increasingly important for policymakers and scientists but have yet to be employed for the development of spatially specific groundwater contamination indices or protecting human and environmental health. The current study sought to develop a series of indices via analyses of three variables: Non-E. coli coliform (NEC) concentration, E. coli concentration, and the calculated NEC:E. coli concentration ratio. A large microbial water quality dataset comprising 1,104,094 samples collected from 292,638 Ontarian wells between 2010 and 2021 was used. Getis-Ord Gi* (Gi*), Local Moran's I (LMI), and space-time scanning were employed for index development based on identified cluster recurrence. Gi* and LMI identify hot and cold spots, i.e., spatially proximal subregions with similarly high or low contamination magnitudes. Indices were statistically compared with mapped well density and age-adjusted enteric infection rates (i.e., campylobacteriosis, cryptosporidiosis, giardiasis, verotoxigenic E. coli (VTEC) enteritis) at a subregional (N = 298) resolution for evaluation and final index selection. Findings suggest that index development via Gi* represented the most efficacious approach. Developed Gi* indices exhibited no correlation with well density, implying that indices are not biased by rural population density. Gi* indices exhibited positive correlations with mapped infection rates, and were particularly associated with higher bacterial (Campylobacter, VTEC) infection rates among younger sub-populations (p < 0.05). Conversely, no association was found between developed indices and giardiasis rates, an infection not typically associated with private groundwater contamination. Findings suggest that a notable proportion of bacterial infections are associated with groundwater and that the developed Gi* index represents an appropriate spatiotemporal reflection of long-term groundwater quality. Bacterial infection correlations with the NEC:E. coli ratio index (p < 0.001) were markedly different compared to correlations with the E. coli index, implying that the ratio may supplement E. coli monitoring as a groundwater assessment metric capable of elucidating contamination mechanisms. This study may serve as a methodological blueprint for the development of big data-based groundwater contamination indices across the globe.

2.
PLoS One ; 18(11): e0291739, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37976287

RESUMEN

In 2021, Campylobacteriosis was the main gastrointestinal disease in the European Union since 2007 according to the European Centre for Disease Prevention and Control. In the Republic of Ireland, the incidence of the disease is particularly high with approximately 3,000 cases per annum, raising significant concerns for national health authorities with an expected increase in the number of cases in the light of climate change. The current study sought to assess the spatio-temporal patterns of campylobacteriosis in the Republic of Ireland using 20,391 cases from January 2011 to December 2018. An ensemble of spatial statistics techniques including seasonal decomposition, spatial clustering and space-time scanning, were used to elucidate the main individual and spatio-temporal characteristics of the disease in the country. Findings revealed that cases from the paediatric age group (i.e., under 5 years old) were more likely to occur in rural areas (aOR: 1.1.27, CI 95% 1.14-1.41) while cases from the intermediate age group (i.e., >5 & <65 years old) were associated with urban living (aOR: 1.30, CI 95% 1.21-1.4). The disease exhibited a peak during Irish summer, with a stronger seasonal signal reported in counties located on the Western part of the country. Infection hotspots were more likely to occur in urban areas, and more particularly on the Southern part of the island and around the main metropolitan areas. Overall, research findings pointed out the influence of local and spatio-temporally specific socio-demographic and environmental risk factors (i.e., cooking habits, local weather, dietary types) therefore highlighting the need for initiating spatio-temporally targeted health management and surveillance strategies.


Asunto(s)
Infecciones por Campylobacter , Gastroenteritis , Infecciones Intraabdominales , Niño , Humanos , Preescolar , Anciano , Infecciones por Campylobacter/epidemiología , Irlanda/epidemiología , Análisis Espacial , Incidencia , Análisis Espacio-Temporal
3.
Risk Anal ; 43(8): 1599-1626, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36114612

RESUMEN

Complex, multihazard risks such as private groundwater contamination necessitate multiannual risk reduction actions including seasonal, weather-based hazard evaluations. In the Republic of Ireland (ROI), high rural reliance on unregulated private wells renders behavior promotion a vital instrument toward safeguarding household health from waterborne infection. However, to date, pathways between behavioral predictors remain unknown while latent constructs such as extreme weather event (EWE) risk perception and self-efficacy (perceived behavioral competency) have yet to be sufficiently explored. Accordingly, a nationwide survey of 560 Irish private well owners was conducted, with structural equation modeling (SEM) employed to identify underlying relationships determining key supply management behaviors. The pathway analysis (SEM) approach was used to model three binary outcomes: information seeking, post-EWE action, and well testing behavior. Upon development of optimal models, perceived self-efficacy emerged as a significant direct and/or indirect driver of all three behavior types-demonstrating the greatest indirect effect (ß = -0.057) on adoption of post-EWE actions and greatest direct (ß = 0.222) and total effect (ß = 0.245) on supply testing. Perceived self-efficacy inversely influenced EWE risk perception in all three models but positively influenced supply awareness (where present). Notably, the presence of a vulnerable (infant and/or elderly) household member negatively influenced adoption of post-EWE actions (ß = -0.131, p = 0.016). Results suggest that residential and age-related factors constitute key demographic variables influencing risk mitigation and are strongly mediated by cognitive variables-particularly self-efficacy. Study findings may help contextualize predictors of private water supply management, providing a basis for future risk-based water interventions.


Asunto(s)
Agua Subterránea , Abastecimiento de Agua , Humanos , Anciano , Análisis de Clases Latentes , Agua Subterránea/química , Irlanda , Conducta de Reducción del Riesgo
4.
Sci Total Environ ; 840: 156311, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35636550

RESUMEN

Groundwater is a vital drinking water resource and its protection from microbiological contamination is paramount to safeguard public health. The Republic of Ireland (RoI) is characterised by the highest incidence of verocytotoxigenic Escherichia coli (VTEC) enteritis in the European Union (EU), linked to high reliance on unregulated groundwater sources (~16% of the population). Yet, the spatio-temporal factors influencing the frequency and magnitude of microbial contamination remain largely unknown, with past studies typically constrained to spatio-temporally 'limited' sampling campaigns. Accordingly, the current investigation sought to analyse an extensive spatially distributed time-series (2011-2020) of groundwater monitoring data in the RoI. The dataset, compiled by the Environmental Protection Agency (EPA), showed 'high' contamination rates, with 66.7% (88/132) of supplies testing positive for E. coli, and 29.5% (39/132) exceeding concentrations of 10MPN/100 ml (i.e. gross contamination) at least once during the 10-year monitoring period. Seasonal decomposition analyses indicate that E. coli detection rates peak during late autumn/early winter, coinciding with increases in annual rainfall, while gross contamination peaks in spring (May) and late-summer (August), likely reflecting seasonal shifts in agricultural practices. Mixed effects logistic regression modelling indicates that monitoring sources located in karst limestone are statistically associated with E. coli presence (OR = 2.76, p = 0.03) and gross contamination (OR = 2.54, p = 0.037) when compared to poorly productive aquifers (i.e., transmissivity below 10m2/d). Moreover, 5-day and 30-day antecedent rainfall increased the likelihood of E. coli contamination (OR = 1.027, p < 0.001 and OR = 1.005, p = 0.016, respectively), with the former also being associated with gross contamination (OR = 1.042, p < 0.001). As such, it is inferred that preferential flow and direct ingress of surface runoff are the most likely ingress mechanisms associated with E. coli groundwater supply contamination. The results presented are expected to inform policy change around groundwater source protection and provide insight for the development of groundwater monitoring programmes in geologically heterogeneous regions.


Asunto(s)
Escherichia coli , Agua Subterránea , Monitoreo del Ambiente , Agua Subterránea/microbiología , Irlanda/epidemiología , Recursos Hídricos
5.
Emerg Infect Dis ; 27(9): 2421-2433, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34424163

RESUMEN

The Republic of Ireland regularly reports the highest annual crude incidence rates of Shiga toxin-producing Escherichia coli (STEC) enteritis in the European Union, ≈10 times the average. We investigated spatiotemporal patterns of STEC enteritis in Ireland using multiple statistical tools. Overall, we georeferenced 2,755 cases of infection during January 2013-December 2017; we found >1 case notified in 2,340 (12.6%) of 18,641 Census Small Areas. We encountered the highest case numbers in children 0-5 years of age (n = 1,101, 39.6%) and associated with serogroups O26 (n = 800, 29%) and O157 (n = 638, 23.2%). Overall, we identified 17 space-time clusters, ranging from 2 (2014) to 5 (2017) clusters of sporadic infection per year; we detected recurrent clustering in 3 distinct geographic regions in the west and mid-west, all of which are primarily rural. Our findings can be used to enable targeted epidemiologic intervention and surveillance.


Asunto(s)
Enteritis , Infecciones por Escherichia coli , Escherichia coli Shiga-Toxigénica , Niño , Enteritis/epidemiología , Infecciones por Escherichia coli/epidemiología , Humanos , Incidencia , Irlanda/epidemiología
6.
PLoS One ; 16(7): e0255254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34324566

RESUMEN

BACKGROUND: To constrain propagation and mitigate the burden of COVID-19, most countries initiated and continue to implement several non-pharmaceutical interventions (NPIs), including national and regional lockdowns. In the Republic of Ireland, the first national lockdown was decreed on 23rd of March 2020, followed by a succession of restriction increases and decreases (phases) over the following year. To date, the effects of these interventions remain unclear, and particularly within differing population subsets. The current study sought to assess the impact of individual NPI phases on COVID-19 transmission patterns within delineated population subgroups in the Republic of Ireland. METHODS AND FINDINGS: Confirmed, anonymised COVID-19 cases occurring between the 29th of February 2020 and 30th November 2020 (n = 72,654) were obtained. Segmented modelling via breakpoint regression with multiple turning points was employed to identify structural breaks across sub-populations, including primary/secondary infections, age deciles, urban/commuter/rural areas, patients with underlying health conditions, and socio-demographic profiles. These were subsequently compared with initiation dates of eight overarching NPI phases. Five distinct breakpoints were identified. The first breakpoint, associated with a decrease in the daily COVID-19 incidence, was reported within 14 days of the first set of restrictions in mid-March 2020 for most population sub-groups. Results suggest that moderately strict NPIs were more effective than the strictest Phase 5 (National Lockdown). Divergences were observed across population sub-groups; lagged response times were observed among populations >80 years, residents of rural/ commuter regions, and cases associated with a below-median deprivation score. CONCLUSIONS: Study findings suggest that many NPIs have been successful in decreasing COVID-19 incidence rates, however the strictest Phase 5 NPI was not. Moreover, NPIs were not equally successful across all sub-populations, with differing response times noted. Future strategies and interventions may need to be increasingly bespoke, based on sub-population profiles and required responses.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Adulto , Femenino , Humanos , Incidencia , Irlanda/epidemiología , Masculino , Distanciamiento Físico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...