Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 869, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054836

RESUMEN

Spinal disinhibition has been hypothesized to underlie pain hypersensitivity in neuropathic pain. Apparently contradictory mechanisms have been reported, raising questions on the best target to produce analgesia. Here, we show that nerve injury is associated with a reduction in the number of inhibitory synapses in the spinal dorsal horn. Paradoxically, this is accompanied by a BDNF-TrkB-mediated upregulation of synaptic GABAARs and by an α1-to-α2GABAAR subunit switch, providing a mechanistic rationale for the analgesic action of the α2,3GABAAR benzodiazepine-site ligand L838,417 after nerve injury. Yet, we demonstrate that impaired Cl- extrusion underlies the failure of L838,417 to induce analgesia at high doses due to a resulting collapse in Cl- gradient, dramatically limiting the benzodiazepine therapeutic window. In turn, enhancing KCC2 activity not only potentiated L838,417-induced analgesia, it rescued its analgesic potential at high doses, revealing a novel strategy for analgesia in pathological pain, by combined targeting of the appropriate GABAAR-subtypes and restoring Cl- homeostasis.


Asunto(s)
Analgésicos/farmacología , Cloruros/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/fisiopatología , Receptores de GABA-A/fisiología , Analgesia/métodos , Analgésicos/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Fluorobencenos/metabolismo , Fluorobencenos/farmacología , Agonistas de Receptores de GABA-A/farmacología , Transporte Iónico/efectos de los fármacos , Ligandos , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptor trkB/metabolismo , Simportadores/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Triazoles/metabolismo , Triazoles/farmacología , Cotransportadores de K Cl
2.
J Neurosci ; 36(3): 979-87, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26791225

RESUMEN

CNS injury may lead to permanent functional deficits because it is still not possible to regenerate axons over long distances and accurately reconnect them with an appropriate target. Using rat neurons, microtools, and nanotools, we show that new, functional neurites can be created and precisely positioned to directly (re)wire neuronal networks. We show that an adhesive contact made onto an axon or dendrite can be pulled to initiate a new neurite that can be mechanically guided to form new synapses at up to 0.8 mm distance in <1 h. Our findings challenge current understanding of the limits of neuronal growth and have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration. Significance statement: Brain and spinal cord injury may lead to permanent disability and death because it is still not possible to regenerate neurons over long distances and accurately reconnect them with an appropriate target. Using microtools and nanotools we have developed a new method to rapidly initiate, elongate, and precisely connect new functional neuronal circuits over long distances. The extension rates achieved are ≥60 times faster than previously reported. Our findings have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration after trauma and in neurodegenerative diseases. It also opens the door for the direct wiring of robust brain-machine interfaces as well as for investigations of fundamental aspects of neuronal signal processing and neuronal function.


Asunto(s)
Corteza Cerebral/fisiología , Hipocampo/fisiología , Red Nerviosa/fisiología , Regeneración Nerviosa/fisiología , Neuronas/fisiología , Animales , Axones/fisiología , Células Cultivadas , Corteza Cerebral/citología , Femenino , Hipocampo/citología , Masculino , Red Nerviosa/citología , Neuritas/fisiología , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
3.
Nat Med ; 19(11): 1524-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24097188

RESUMEN

The K(+)-Cl(-) cotransporter KCC2 is responsible for maintaining low Cl(-) concentration in neurons of the central nervous system (CNS), which is essential for postsynaptic inhibition through GABA(A) and glycine receptors. Although no CNS disorders have been associated with KCC2 mutations, loss of activity of this transporter has emerged as a key mechanism underlying several neurological and psychiatric disorders, including epilepsy, motor spasticity, stress, anxiety, schizophrenia, morphine-induced hyperalgesia and chronic pain. Recent reports indicate that enhancing KCC2 activity may be the favored therapeutic strategy to restore inhibition and normal function in pathological conditions involving impaired Cl(-) transport. We designed an assay for high-throughput screening that led to the identification of KCC2 activators that reduce intracellular chloride concentration ([Cl(-)]i). Optimization of a first-in-class arylmethylidine family of compounds resulted in a KCC2-selective analog (CLP257) that lowers [Cl(-)]i. CLP257 restored impaired Cl(-) transport in neurons with diminished KCC2 activity. The compound rescued KCC2 plasma membrane expression, renormalized stimulus-evoked responses in spinal nociceptive pathways sensitized after nerve injury and alleviated hypersensitivity in a rat model of neuropathic pain. Oral efficacy for analgesia equivalent to that of pregabalin but without motor impairment was achievable with a CLP257 prodrug. These results validate KCC2 as a druggable target for CNS diseases.


Asunto(s)
Analgésicos/uso terapéutico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Simportadores/agonistas , Tiazolidinas/uso terapéutico , Analgésicos/química , Animales , Células CHO , Cloruros/metabolismo , Cricetinae , Cricetulus , Modelos Animales de Enfermedad , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Líquido Intracelular/metabolismo , Transporte Iónico/efectos de los fármacos , Masculino , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Ratas , Ratas Sprague-Dawley , Tiazolidinas/química , Cotransportadores de K Cl
4.
Nature ; 438(7070): 1017-21, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16355225

RESUMEN

Neuropathic pain that occurs after peripheral nerve injury depends on the hyperexcitability of neurons in the dorsal horn of the spinal cord. Spinal microglia stimulated by ATP contribute to tactile allodynia, a highly debilitating symptom of pain induced by nerve injury. Signalling between microglia and neurons is therefore an essential link in neuropathic pain transmission, but how this signalling occurs is unknown. Here we show that ATP-stimulated microglia cause a depolarizing shift in the anion reversal potential (E(anion)) in spinal lamina I neurons. This shift inverts the polarity of currents activated by GABA (gamma-amino butyric acid), as has been shown to occur after peripheral nerve injury. Applying brain-derived neurotrophic factor (BDNF) mimics the alteration in E(anion). Blocking signalling between BDNF and the receptor TrkB reverses the allodynia and the E(anion) shift that follows both nerve injury and administration of ATP-stimulated microglia. ATP stimulation evokes the release of BDNF from microglia. Preventing BDNF release from microglia by pretreating them with interfering RNA directed against BDNF before ATP stimulation also inhibits the effects of these cells on the withdrawal threshold and E(anion). Our results show that ATP-stimulated microglia signal to lamina I neurons, causing a collapse of their transmembrane anion gradient, and that BDNF is a crucial signalling molecule between microglia and neurons. Blocking this microglia-neuron signalling pathway may represent a therapeutic strategy for treating neuropathic pain.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Dolor/fisiopatología , Adenosina Trifosfato/farmacología , Animales , Aniones/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Microglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Células del Asta Posterior/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Médula Espinal/citología
5.
J Neurosci ; 25(42): 9613-23, 2005 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-16237166

RESUMEN

A deficit in inhibition in the spinal dorsal horn has been proposed to be an underlying cause of the exaggerated cutaneous sensory reflexes observed in newborn rats. However, the developmental shift in transmembrane anion gradient, potentially affecting the outcome of GABAA transmission, was shown to be completed within 1 week after birth in the spinal cord, an apparent disparity with the observation that reflex hypersensitivity persists throughout the first 2-3 postnatal weeks. To further investigate this issue, we used several approaches to assess the action of GABA throughout development in spinal lamina I (LI) neurons. GABA induced an entry of extracellular calcium in LI neurons from postnatal day 0 (P0) to P21 rats, which involved T- and N-type voltage-gated calcium channels. Gramicidin perforated-patch recordings revealed that the shift in anion gradient was completed by P7 in LI neurons. However, high chloride pipette recordings demonstrated that these neurons had not reached their adult chloride extrusion capacity by P10-P11. Simultaneous patch-clamp recordings and calcium imaging revealed that biphasic responses to GABA, consisting of a primary hyperpolarization followed by a rebound depolarization, produced a rise in [Ca2+]i. Thus, even if Eanion predicts GABAA-induced hyperpolarization from rest, a low chloride extrusion capacity can cause a rebound depolarization and an ensuing rise in [Ca2+]i. We demonstrate that GABA action in LI neurons matures throughout the first 3 postnatal weeks, therefore matching the time course of maturation of withdrawal reflexes. Immature spinal GABA signaling may thus contribute to the nociceptive hypersensitivity in infant rats.


Asunto(s)
Canales de Cloruro/fisiología , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/crecimiento & desarrollo , Receptores de GABA-A/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/farmacología , Animales , Animales Recién Nacidos , Aniones , Canales de Calcio/fisiología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Agonistas de Receptores de GABA-A , Células del Asta Posterior/fisiología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos
6.
Nature ; 424(6951): 938-42, 2003 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-12931188

RESUMEN

Modern pain-control theory predicts that a loss of inhibition (disinhibition) in the dorsal horn of the spinal cord is a crucial substrate for chronic pain syndromes. However, the nature of the mechanisms that underlie such disinhibition has remained controversial. Here we present evidence for a novel mechanism of disinhibition following peripheral nerve injury. It involves a trans-synaptic reduction in the expression of the potassium-chloride exporter KCC2, and the consequent disruption of anion homeostasis in neurons of lamina I of the superficial dorsal horn, one of the main spinal nociceptive output pathways. In our experiments, the resulting shift in the transmembrane anion gradient caused normally inhibitory anionic synaptic currents to be excitatory, substantially driving up the net excitability of lamina I neurons. Local blockade or knock-down of the spinal KCC2 exporter in intact rats markedly reduced the nociceptive threshold, confirming that the reported disruption of anion homeostasis in lamina I neurons was sufficient to cause neuropathic pain.


Asunto(s)
Neuronas/metabolismo , Dolor/fisiopatología , Médula Espinal/citología , Médula Espinal/fisiopatología , Simportadores/metabolismo , Sinapsis/metabolismo , Animales , Aniones/metabolismo , Enfermedad Crónica , Homeostasis , Técnicas In Vitro , Masculino , Modelos Neurológicos , Umbral del Dolor , Traumatismos de los Nervios Periféricos , Nervios Periféricos/fisiopatología , Ratas , Receptores de GABA-A/metabolismo , Receptores de Glicina/metabolismo , Simportadores/antagonistas & inhibidores , Simportadores/genética , Cotransportadores de K Cl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA