Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 20(9): e3001782, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070319

RESUMEN

In metazoa, cilia assembly is a cellular process that starts with centriole to basal body maturation, migration to the cell surface, and docking to the plasma membrane. Basal body docking involves the interaction of both the distal end of the basal body and the transition fibers/distal appendages, with the plasma membrane. Mutations in numerous genes involved in basal body docking and transition zone assembly are associated with the most severe ciliopathies, highlighting the importance of these events in cilium biogenesis. In this context, the ciliate Paramecium has been widely used as a model system to study basal body and cilia assembly. However, despite the evolutionary conservation of cilia assembly events across phyla, whether the same molecular players are functionally conserved, is not fully known. Here, we demonstrated that CEP90, FOPNL, and OFD1 are evolutionary conserved proteins crucial for ciliogenesis. Using ultrastructure expansion microscopy, we unveiled that these proteins localize at the distal end of both centrioles/basal bodies in Paramecium and mammalian cells. Moreover, we found that these proteins are recruited early during centriole duplication on the external surface of the procentriole. Functional analysis performed both in Paramecium and mammalian cells demonstrate the requirement of these proteins for distal appendage assembly and basal body docking. Finally, we show that mammalian centrioles require another component, Moonraker (MNR), to recruit OFD1, FOPNL, and CEP90, which will then recruit the distal appendage proteins CEP83, CEP89, and CEP164. Altogether, we propose that this OFD1, FOPNL, and CEP90 functional module is required to determine in mammalian cells the future position of distal appendage proteins.


Asunto(s)
Centriolos/metabolismo , Cilios/ultraestructura , Paramecium/metabolismo , Animales , Membrana Celular , Centriolos/química , Cilios/metabolismo , Mamíferos , Paramecium/química , Paramecium/citología
2.
Med Sci (Paris) ; 37(6-7): 632-638, 2021.
Artículo en Francés | MEDLINE | ID: mdl-34180823

RESUMEN

The cilium is a cell extension forming a distinct compartment of eukaryotic cell body with a complex and dynamic structure. This structure is highly conserved across species and ensures various functions as sensory and motility. In humans, ciliary dysfunction results in diseases (ciliopathies) that can affect all organs. Thanks to its complex ciliary structure, the unicellular and ciliated microorganism, Paramecium, constitutes a model of choice not only to study the structure, assembly and function of cilia but also to validate the specific role of mutations of genes linked to the ciliopathies.


TITLE: La paramécie, un organisme modèle pour étudier la ciliogenèse et les maladies ciliaires. ABSTRACT: Le cil est une extension présente à la surface de la quasi-totalité des cellules eucaryotes. Conservé au cours de l'évolution, il assure des fonctions sensorielles et/ou motiles. Chez l'homme, le dysfonctionnement ciliaire est à l'origine de différentes maladies regroupées sous le nom de ciliopathies. Grâce à sa ciliature complexe, la paramécie constitue un modèle de choix pour étudier non seulement la structure, l'assemblage et les fonctions des cils, mais aussi pour valider les mutations de gènes associées à ces ciliopathies.


Asunto(s)
Ciliopatías , Cilios , Ciliopatías/genética , Células Eucariotas , Humanos , Paramecium/genética
3.
PLoS Biol ; 18(3): e3000640, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32163404

RESUMEN

Ciliary shedding occurs from unicellular organisms to metazoans. Although required during the cell cycle and during neurogenesis, the process remains poorly understood. In all cellular models, this phenomenon occurs distal to the transition zone (TZ), suggesting conserved molecular mechanisms. The TZ module proteins (Meckel Gruber syndrome [MKS]/Nephronophtysis [NPHP]/Centrosomal protein of 290 kDa [CEP290]/Retinitis pigmentosa GTPase regulator-Interacting Protein 1-Like Protein [RPGRIP1L]) are known to cooperate to establish TZ formation and function. To determine whether they control deciliation, we studied the function of 5 of them (Transmembrane protein 107 [TMEM107], Transmembrane protein 216 [TMEM216], CEP290, RPGRIP1L, and NPHP4) in Paramecium. All proteins are recruited to the TZ of growing cilia and localize with 9-fold symmetry at the level of the most distal part of the TZ. We demonstrate that depletion of the MKS2/TMEM216 and TMEM107 proteins induces constant deciliation of some cilia, while depletion of either NPHP4, CEP290, or RPGRIP1L prevents Ca2+/EtOH deciliation. Our results constitute the first evidence for a role of conserved TZ proteins in deciliation and open new directions for understanding motile cilia physiology.


Asunto(s)
Cilios/metabolismo , Paramecium tetraurelia/citología , Proteínas Protozoarias/metabolismo , Proliferación Celular , Cilios/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Expresión Génica , Fusión de Membrana/genética , Paramecium tetraurelia/genética , Dominios Proteicos , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Interferencia de ARN
4.
Am J Hum Genet ; 106(2): 153-169, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31978331

RESUMEN

Cilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs and IDAs). Defects in ODAs and IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. PCD mutations in assembly factors have been shown to cause a combined ODA-IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the absence of only IDAs in respiratory cilia. Analyses of both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach revealed an IDA defect restricted to a subset of single-headed IDAs that are different in flagella and cilia, whereas TTC12 depletion in the ciliate Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella.


Asunto(s)
Cilios/patología , Trastornos de la Motilidad Ciliar/etiología , Dineínas/metabolismo , Flagelos/patología , Mutación , Proteínas/genética , Cola del Espermatozoide/patología , Adulto , Axonema , Niño , Cilios/metabolismo , Trastornos de la Motilidad Ciliar/patología , Dineínas/genética , Femenino , Flagelos/metabolismo , Homocigoto , Humanos , Infertilidad Masculina/etiología , Infertilidad Masculina/patología , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Motilidad Espermática , Cola del Espermatozoide/metabolismo , Adulto Joven
5.
Methods Mol Biol ; 1889: 229-243, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30367417

RESUMEN

Myogenesis is a multistep process taking place during pre- and postnatal stages for muscle formation, growth, and regeneration. It is a highly regulated process involving many molecular factors which act during myoblast proliferation and differentiation. To provide new insights into the molecular mechanisms and interactions behind the regulation of these different steps, RNA interference is an efficient methodology to implement. We developed a high-throughput siRNA screen in C2C12 murine myoblast cells for identification of genes relevant to signaling pathways controlling muscle growth. The proposed protocol is based on (1) the analyses of a maximum number of cells/myotubes to detect and quantify both clear and subtle phenotypes during proliferation/fusion cells and (2) the use of two cellular fluorescent markers, DAPI and myosin, decorating nuclei and myotubes respectively. Four phenotypic criteria were quantitatively assessed: cellular density, myotubes quantity, fusion index, and size and morphology of myotubes.


Asunto(s)
Desarrollo de Músculos/genética , Mioblastos/metabolismo , ARN Interferente Pequeño/genética , Animales , Diferenciación Celular/genética , Proliferación Celular , Ratones , Imagen Molecular/métodos , Mioblastos/citología , Fenotipo , Interferencia de ARN , Transfección
6.
Exp Cell Res ; 359(1): 145-153, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28782556

RESUMEN

Myogenesis is a highly regulated multi-step process involving myoblast proliferation and differentiation. Although studies over the last decades have identified several factors governing these distinct major phases, many of them are not yet known. In order to identify novel genes, we took advantage of the C2C12 myoblastic line to establish a functional siRNA screen combined with quantitative-imaging analysis of a large amount of differentiated myoblasts. We knocked down 100 preselected mouse genes without a previously characterized role in muscle. Using image analysis, we tracked gene-silencing phenotypes by quantitative assessment of cellular density, myotube quantity, myotube morphology and fusion index. Our results have revealed six genes involved in both stages of C2C12 myogenesis and 13 genes specific to the differentiation stage. These findings prove that our RNAi-based screen could be an efficient tool to detect clear and subtle phenotypes allowing the identification of new myogenic regulators in mammals.


Asunto(s)
Diferenciación Celular/genética , Pruebas Genéticas , Desarrollo de Músculos/genética , Mioblastos/citología , Mioblastos/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Fenotipo , Interferencia de ARN
7.
Biol Open ; 6(6): 765-776, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28432105

RESUMEN

First discovered in unicellular eukaryotes, centrins play crucial roles in basal body duplication and anchoring mechanisms. While the evolutionary status of the founding members of the family, Centrin2/Vfl2 and Centrin3/cdc31 has long been investigated, the evolutionary origin of other members of the family has received less attention. Using a phylogeny of ciliate centrins, we identify two other centrin families, the ciliary centrins and the centrins present in the contractile filaments (ICL centrins). In this paper, we carry on the functional analysis of still not well-known centrins, the ICL1e subfamily identified in Paramecium, and show their requirement for correct basal body anchoring through interactions with Centrin2 and Centrin3. Using Paramecium as well as a eukaryote-wide sampling of centrins from completely sequenced genomes, we revisited the evolutionary story of centrins. Their phylogeny shows that the centrins associated with the ciliate contractile filaments are widespread in eukaryotic lineages and could be as ancient as Centrin2 and Centrin3.

8.
Nature ; 509(7501): 447-52, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24805235

RESUMEN

In the ciliate Paramecium, transposable elements and their single-copy remnants are deleted during the development of somatic macronuclei from germline micronuclei, at each sexual generation. Deletions are targeted by scnRNAs, small RNAs produced from the germ line during meiosis that first scan the maternal macronuclear genome to identify missing sequences, and then allow the zygotic macronucleus to reproduce the same deletions. Here we show that this process accounts for the maternal inheritance of mating types in Paramecium tetraurelia, a long-standing problem in epigenetics. Mating type E depends on expression of the transmembrane protein mtA, and the default type O is determined during development by scnRNA-dependent excision of the mtA promoter. In the sibling species Paramecium septaurelia, mating type O is determined by coding-sequence deletions in a different gene, mtB, which is specifically required for mtA expression. These independently evolved mechanisms suggest frequent exaptation of the scnRNA pathway to regulate cellular genes and mediate transgenerational epigenetic inheritance of essential phenotypic polymorphisms.


Asunto(s)
Epigénesis Genética/genética , Genoma/genética , Patrón de Herencia/genética , Paramecium tetraurelia/genética , ARN Interferente Pequeño/genética , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica , Genes/genética , Datos de Secuencia Molecular , Paramecium tetraurelia/fisiología , Regiones Promotoras Genéticas/genética , Reproducción/genética , Reproducción/fisiología , Eliminación de Secuencia/genética
9.
Nucleic Acids Res ; 39(10): 4249-64, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21216825

RESUMEN

Proteins of the Argonaute family are small RNA carriers that guide regulatory complexes to their targets. The family comprises two major subclades. Members of the Ago subclade, which are present in most eukaryotic phyla, bind different classes of small RNAs and regulate gene expression at both transcriptional and post-transcriptional levels. Piwi subclade members appear to have been lost in plants and fungi and were mostly studied in metazoa, where they bind piRNAs and have essential roles in sexual reproduction. Their presence in ciliates, unicellular organisms harbouring both germline micronuclei and somatic macronuclei, offers an interesting perspective on the evolution of their functions. Here, we report phylogenetic and functional analyses of the 15 Piwi genes from Paramecium tetraurelia. We show that four constitutively expressed proteins are involved in siRNA pathways that mediate gene silencing throughout the life cycle. Two other proteins, specifically expressed during meiosis, are required for accumulation of scnRNAs during sexual reproduction and for programmed genome rearrangements during development of the somatic macronucleus. Our results indicate that Paramecium Piwi proteins have evolved to perform both vegetative and sexual functions through mechanisms ranging from post-transcriptional mRNA cleavage to epigenetic regulation of genome rearrangements.


Asunto(s)
Paramecium tetraurelia/genética , Proteínas Protozoarias/fisiología , Interferencia de ARN , Genoma , Paramecium tetraurelia/crecimiento & desarrollo , Paramecium tetraurelia/metabolismo , Filogenia , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , ARN Bicatenario/metabolismo , Transgenes
10.
BMC Genomics ; 11: 547, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20932287

RESUMEN

BACKGROUND: The genome of Paramecium tetraurelia, a unicellular model that belongs to the ciliate phylum, has been shaped by at least 3 successive whole genome duplications (WGD). These dramatic events, which have also been documented in plants, animals and fungi, are resolved over evolutionary time by the loss of one duplicate for the majority of genes. Thanks to a low rate of large scale genome rearrangement in Paramecium, an unprecedented large number of gene duplicates of different ages have been identified, making this organism an outstanding model to investigate the evolutionary consequences of polyploidization. The most recent WGD, with 51% of pre-duplication genes still in 2 copies, provides a snapshot of a phase of rapid gene loss that is not accessible in more ancient polyploids such as yeast. RESULTS: We designed a custom oligonucleotide microarray platform for P. tetraurelia genome-wide expression profiling and used the platform to measure gene expression during 1) the sexual cycle of autogamy, 2) growth of new cilia in response to deciliation and 3) biogenesis of secretory granules after massive exocytosis. Genes that are differentially expressed during these time course experiments have expression patterns consistent with a very low rate of subfunctionalization (partition of ancestral functions between duplicated genes) in particular since the most recent polyploidization event. CONCLUSIONS: A public transcriptome resource is now available for Paramecium tetraurelia. The resource has been integrated into the ParameciumDB model organism database, providing searchable access to the data. The microarray platform, freely available through NimbleGen Systems, provides a robust, cost-effective approach for genome-wide expression profiling in P. tetraurelia. The expression data support previous studies showing that at short evolutionary times after a whole genome duplication, gene dosage balance constraints and not functional change are the major determinants of gene retention.


Asunto(s)
Cilios/genética , Evolución Molecular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Paramecium tetraurelia/genética , Poliploidía , Animales , Análisis por Conglomerados , Duplicación de Gen/genética , Genes Protozoarios/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Paramecium tetraurelia/crecimiento & desarrollo , Vesículas Secretoras/genética , Factores de Tiempo
11.
Nature ; 451(7176): 359-62, 2008 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-18202663

RESUMEN

Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.


Asunto(s)
Empalme Alternativo , Células Eucariotas/metabolismo , Intrones/genética , Paramecium/genética , Biosíntesis de Proteínas , Animales , Secuencia de Bases , Codón de Terminación/genética , Biología Computacional , Etiquetas de Secuencia Expresada , Genes Protozoarios/genética , Datos de Secuencia Molecular , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Estabilidad del ARN , ARN Protozoario/genética , ARN Protozoario/metabolismo
12.
Nature ; 444(7116): 171-8, 2006 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17086204

RESUMEN

The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications. Phylogenetic analysis indicates that the most recent duplication coincides with an explosion of speciation events that gave rise to the P. aurelia complex of 15 sibling species. We observed that gene loss occurs over a long timescale, not as an initial massive event. Genes from the same metabolic pathway or protein complex have common patterns of gene loss, and highly expressed genes are over-retained after all duplications. The conclusion of this analysis is that many genes are maintained after whole-genome duplication not because of functional innovation but because of gene dosage constraints.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genoma de Protozoos/genética , Genómica , Paramecium tetraurelia/genética , Animales , Células Eucariotas/metabolismo , Genes Duplicados/genética , Genes Protozoarios/genética , Datos de Secuencia Molecular , Filogenia
13.
Genetics ; 167(1): 151-9, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15166143

RESUMEN

Repeat-induced point mutation (RIP) is a homology-dependent gene-silencing mechanism that introduces C:G-to-T:A transitions in duplicated DNA segments. Cis-duplicated sequences can also be affected by another mechanism called premeiotic recombination (PR). Both are active over the sexual cycle of some filamentous fungi, e.g., Neurospora crassa and Podospora anserina. During the sexual cycle, several developmental steps require precise nuclear movement and positioning, but connections between RIP, PR, and nuclear distributions have not yet been established. Previous work has led to the isolation of ami1, the P. anserina ortholog of the Aspergillus nidulans apsA gene, which is required for nuclear positioning. We show here that ami1 is involved in nuclear distribution during the sexual cycle and that alteration of ami1 delays the fruiting-body development. We also demonstrate that ami1 alteration affects loss of transgene functions during the sexual cycle. Genetically linked multiple copies of transgenes are affected by RIP and PR much more frequently in an ami1 mutant cross than in a wild-type cross. Our results suggest that the developmental slowdown of the ami1 mutant during the period of RIP and PR increases time exposure to the duplication detection system and thus increases the frequency of RIP and PR.


Asunto(s)
Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Podospora/genética , Mutación Puntual , Cruzamientos Genéticos , ADN/metabolismo , Eliminación de Gen , Silenciador del Gen , Prueba de Complementación Genética , Homocigoto , Mutación , Fenotipo , Fosfotransferasas/genética , Plásmidos/metabolismo , Recombinación Genética , Huso Acromático/metabolismo , Factores de Tiempo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...