Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Methods ; 20(1): 71, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755652

RESUMEN

BACKGROUND: The genetic basis of colour development in red-flesh apples (Malus domestica Borkh) has been widely characterised; however, current models do not explain the observed variations in red pigmentation intensity and distribution. Available methods to evaluate the red-flesh trait rely on the estimation of an average overall colour using a discrete class notation index. However, colour variations among red-flesh cultivars are continuous while development of red colour is non-homogeneous and genotype-dependent. A robust estimation of red-flesh colour intensity and distribution is essential to fully capture the diversity among genotypes and provide a basis to enable identification of loci influencing the red-flesh trait. RESULTS: In this study, we developed a multivariable approach to evaluate the red-flesh trait in apple. This method was implemented to study the phenotypic diversity in a segregating hybrid F1 family (91 genotypes). We developed a Python pipeline based on image and colour analysis to quantitatively dissect the red-flesh pigmentation from RGB (Red Green Blue) images and compared the efficiency of RGB and CIEL*a*b* colour spaces in discriminating genotypes previously classified with a visual notation. Chemical destructive methods, including targeted-metabolite analysis using ultra-high performance liquid chromatography with ultraviolet detection (UPLC-UV), were performed to quantify major phenolic compounds in fruits' flesh, as well as pH and water contents. Multivariate analyses were performed to study covariations of biochemical factors in relation to colour expression in CIEL*a*b* colour space. Our results indicate that anthocyanin, flavonol and flavanol concentrations, as well as pH, are closely related to flesh pigmentation in apple. CONCLUSTION: Extraction of colour descriptors combined to chemical analyses helped in discriminating genotypes in relation to their flesh colour. These results suggest that the red-flesh trait in apple is a complex trait associated with several biochemical factors.

2.
Bioresour Technol ; 250: 191-196, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29172183

RESUMEN

The present work investigates the impact of the physical properties and loading strategies of wheat straw and miscanthus on enzymatic hydrolysis at high DM concentration. Three parameters have been chosen to evaluate the enzymatic hydrolysis performance: (i) the mixing time, (ii) the energetic mixing consumption and (iii) the glucose concentration. It was demonstrated that the hydrolysis of miscanthus is easy to perform and has low viscosity. On the contrary, the higher porosity grade of wheat straw than miscanthus (73% against 52%) contributed to have a very high viscosity at 20% w/w DM. The development of a fed-batch strategy allowed the reduction of viscosity inducing the energetic consumption lowering from 30 kJ to 10 kJ. It has been also proven that the miscanthus addition in wheat straw achieved to decrease mixing energy consumption at 5-8 kJ, when it represented more than 30% of the total mass of the reaction medium.


Asunto(s)
Hidrólisis , Triticum , Poaceae , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...