Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(747): eadj7685, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748774

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is an aggressive bile duct malignancy that frequently exhibits isocitrate dehydrogenase (IDH1/IDH2) mutations. Mutant IDH (IDHm) ICC is dependent on SRC kinase for growth and survival and is hypersensitive to inhibition by dasatinib, but the molecular mechanism underlying this sensitivity is unclear. We found that dasatinib reduced p70 S6 kinase (S6K) and ribosomal protein S6 (S6), leading to substantial reductions in cell size and de novo protein synthesis. Using an unbiased phosphoproteomic screen, we identified membrane-associated guanylate kinase, WW, and PDZ domain containing 1 (MAGI1) as an SRC substrate in IDHm ICC. Biochemical and functional assays further showed that SRC inhibits a latent tumor-suppressing function of the MAGI1-protein phosphatase 2A (PP2A) complex to activate S6K/S6 signaling in IDHm ICC. Inhibiting SRC led to activation and increased access of PP2A to dephosphorylate S6K, resulting in cell death. Evidence from patient tissue and cell line models revealed that both intrinsic and extrinsic resistance to dasatinib is due to increased phospho-S6 (pS6). To block pS6, we paired dasatinib with the S6K/AKT inhibitor M2698, which led to a marked reduction in pS6 in IDHm ICC cell lines and patient-derived organoids in vitro and substantial growth inhibition in ICC patient-derived xenografts in vivo. Together, these results elucidated the mechanism of action of dasatinib in IDHm ICC, revealed a signaling complex regulating S6K phosphorylation independent of mTOR, suggested markers for dasatinib sensitivity, and described a combination therapy for IDHm ICC that may be actionable in the clinic.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Colangiocarcinoma , Dasatinib , Isocitrato Deshidrogenasa , Mutación , Familia-src Quinasas , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Dasatinib/farmacología , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/genética , Mutación/genética , Fosforilación/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo
2.
Sci Adv ; 8(43): eabo1304, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36306353

RESUMEN

Quiescent leukemic cells survive chemotherapy, with translation changes. Our data reveal that FXR1, a protein amplified in several aggressive cancers, is elevated in quiescent and chemo-treated leukemic cells and promotes chemosurvival. This suggests undiscovered roles for this RNA- and ribosome-associated protein in chemosurvival. We find that FXR1 depletion reduces translation, with altered rRNAs, snoRNAs, and ribosomal proteins (RPs). FXR1 regulates factors that promote transcription and processing of ribosomal genes and snoRNAs. Ribosome changes in FXR1-overexpressing cells, including RPLP0/uL10 levels, activate eIF2α kinases. Accordingly, phospho-eIF2α increases, enabling selective translation of survival and immune regulators in FXR1-overexpressing cells. Overriding these genes or phospho-eIF2α with inhibitors reduces chemosurvival. Thus, elevated FXR1 in quiescent or chemo-treated leukemic cells alters ribosomes that trigger stress signals to redirect translation for chemosurvival.

3.
FASEB J ; 35(12): e22019, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34792819

RESUMEN

Exogenously applied mature naïve B220+ /CD19+ /IgM+ /IgD+ B cells are strongly protective in the context of tissue injury. However, the mechanisms by which B cells detect tissue injury and aid repair remain elusive. Here, we show in distinct models of skin and brain injury that MyD88-dependent toll-like receptor (TLR) signaling through TLR2/6 and TLR4 is essential for the protective benefit of B cells in vivo, while B cell-specific deletion of MyD88 abrogated this effect. The B cell response to injury was multi-modal with simultaneous production of both regulatory cytokines, such as IL-10, IL-35, and transforming growth factor beta (TGFß), and inflammatory cytokines, such as tumor necrosis factor alpha (TNFα), IL-6, and interferon gamma. Cytometry analysis showed that this response was time and environment-dependent in vivo, with 20%-30% of applied B cells adopting an immune modulatory phenotype with high co-expression of anti- and pro-inflammatory cytokines after 18-48 h at the injury site. B cell treatment reduced the expression of TNFα and increased IL-10 and TGFß in infiltrating immune cells and fibroblasts at the injury site. Proteomic analysis further showed that B cells have a complex time-dependent homeostatic effect on the injured microenvironment, reducing the expression of inflammation-associated proteins, and increasing proteins associated with proliferation, tissue remodeling, and protection from oxidative stress. These findings chart and validate a first mechanistic understanding of the effects of B cells as an immunomodulatory cell therapy in the context of tissue injury.


Asunto(s)
Linfocitos B/fisiología , Lesiones Encefálicas/prevención & control , Citocinas/metabolismo , Factor 88 de Diferenciación Mieloide/fisiología , Piel/inmunología , Cicatrización de Heridas , Animales , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Interleucina-10/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Transducción de Señal , Piel/lesiones , Piel/metabolismo , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Commun Biol ; 4(1): 977, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404904

RESUMEN

Inactivation of RB is one of the hallmarks of cancer, however gaps remain in our understanding of how RB-loss changes human cells. Here we show that pRB-depletion results in cellular reprogramming, we quantitatively measured how RB-depletion altered the transcriptional, proteomic and metabolic output of non-tumorigenic RPE1 human cells. These profiles identified widespread changes in metabolic and cell stress response factors previously linked to E2F function. In addition, we find a number of additional pathways that are sensitive to RB-depletion that are not E2F-regulated that may represent compensatory mechanisms to support the growth of RB-depleted cells. To determine whether these molecular changes are also present in RB1-/- tumors, we compared these results to Retinoblastoma and Small Cell Lung Cancer data, and identified widespread conservation of alterations found in RPE1 cells. To define which of these changes contribute to the growth of cells with de-regulated E2F activity, we assayed how inhibiting or depleting these proteins affected the growth of RB1-/- cells and of Drosophila E2f1-RNAi models in vivo. From this analysis, we identify key metabolic pathways that are essential for the growth of pRB-deleted human cells.


Asunto(s)
Neoplasias de la Retina/fisiopatología , Proteínas de Unión a Retinoblastoma/genética , Retinoblastoma/fisiopatología , Ubiquitina-Proteína Ligasas/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Proteínas de Unión a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
6.
Elife ; 102021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34251339

RESUMEN

The E2F transcription factors play a critical role in controlling cell fate. In Drosophila, the inactivation of E2F in either muscle or fat body results in lethality, suggesting an essential function for E2F in these tissues. However, the cellular and organismal consequences of inactivating E2F in these tissues are not fully understood. Here, we show that the E2F loss exerts both tissue-intrinsic and systemic effects. The proteomic profiling of E2F-deficient muscle and fat body revealed that E2F regulates carbohydrate metabolism, a conclusion further supported by metabolomic profiling. Intriguingly, animals with E2F-deficient fat body had a lower level of circulating trehalose and reduced storage of fat. Strikingly, a sugar supplement was sufficient to restore both trehalose and fat levels, and subsequently rescued animal lethality. Collectively, our data highlight the unexpected complexity of E2F mutant phenotype, which is a result of combining both tissue-specific and systemic changes that contribute to animal development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Factores de Transcripción E2F/metabolismo , Cuerpo Adiposo/metabolismo , Factores de Transcripción/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Ciclo Celular , Drosophila , Proteínas de Drosophila/genética , Factores de Transcripción E2F/genética , Regulación del Desarrollo de la Expresión Génica , Metabolómica/métodos , Músculos/metabolismo , Fenotipo , Proteómica/métodos , Factores de Transcripción/genética , Transcripción Genética , Trehalosa/metabolismo
7.
Nat Protoc ; 16(7): 3672-3694, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34108731

RESUMEN

More than 90% of the human genome is transcribed into noncoding RNAs, but their functional characterization has lagged behind. A major bottleneck in the understanding of their functions and mechanisms has been a dearth of systematic methods for identifying interacting protein partners. There now exist several methods, including identification of direct RNA interacting proteins (iDRiP), chromatin isolation by RNA purification (ChIRP), and RNA antisense purification, each previously applied towards identifying a proteome for the prototype noncoding RNA, Xist. iDRiP has recently been modified to successfully identify proteomes for two additional noncoding RNAs of interest, TERRA and U1 RNA. Here we describe the modified protocol in detail, highlighting technical differences that facilitate capture of various noncoding RNAs. The protocol can be applied to short and long RNAs in both cultured cells and tissues, and requires ~1 week from start to finish. Here we also perform a comparative analysis between iDRiP and ChIRP. We obtain partially overlapping profiles, but find that iDRiP yields a greater number of specific proteins and fewer mitochondrial contaminants. With an increasing number of essential long noncoding RNAs being described, robust RNA-centric protein capture methods are critical for the probing of noncoding RNA function and mechanism.


Asunto(s)
Proteómica/métodos , ARN no Traducido/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Reactivos de Enlaces Cruzados/química , ADN Complementario/genética , Ratones , Unión Proteica , Proteoma/metabolismo , Reproducibilidad de los Resultados , Rayos Ultravioleta
8.
Nat Cell Biol ; 22(9): 1116-1129, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32807903

RESUMEN

How allelic asymmetry is generated remains a major unsolved problem in epigenetics. Here we model the problem using X-chromosome inactivation by developing "BioRBP", an enzymatic RNA-proteomic method that enables probing of low-abundance interactions and an allelic RNA-depletion and -tagging system. We identify messenger RNA-decapping enzyme 1A (DCP1A) as a key regulator of Tsix, a noncoding RNA implicated in allelic choice through X-chromosome pairing. DCP1A controls Tsix half-life and transcription elongation. Depleting DCP1A causes accumulation of X-X pairs and perturbs the transition to monoallelic Tsix expression required for Xist upregulation. While ablating DCP1A causes hyperpairing, forcing Tsix degradation resolves pairing and enables Xist upregulation. We link pairing to allelic partitioning of CCCTC-binding factor (CTCF) and show that tethering DCP1A to one Tsix allele is sufficient to drive monoallelic Xist expression. Thus, DCP1A flips a bistable switch for the mutually exclusive determination of active and inactive Xs.


Asunto(s)
Endorribonucleasas/metabolismo , ARN/metabolismo , Transactivadores/metabolismo , Cromosoma X/metabolismo , Alelos , Animales , Factor de Unión a CCCTC/metabolismo , Línea Celular , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Transcripción Genética/fisiología , Regulación hacia Arriba/fisiología , Inactivación del Cromosoma X/fisiología
9.
Anesthesiology ; 133(3): 595-610, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32701572

RESUMEN

BACKGROUND: Sevoflurane anesthesia induces Tau phosphorylation and cognitive impairment in neonatal but not in adult mice. This study tested the hypothesis that differences in brain Tau amounts and in the activity of mitochondria-adenosine triphosphate (ATP)-Nuak1-Tau cascade between the neonatal and adult mice contribute to the age-dependent effects of sevoflurane on cognitive function. METHODS: 6- and 60-day-old mice of both sexes received anesthesia with 3% sevoflurane for 2 h daily for 3 days. Biochemical methods were used to measure amounts of Tau, phosphorylated Tau, Nuak1, ATP concentrations, and mitochondrial metabolism in the cerebral cortex and hippocampus. The Morris water maze test was used to evaluate cognitive function in the neonatal and adult mice. RESULTS: Under baseline conditions and compared with 60-day-old mice, 6-day-old mice had higher amounts of Tau (2.6 ± 0.4 [arbitrary units, mean ± SD] vs. 1.3 ± 0.2; P < 0.001), Tau oligomer (0.3 ± 0.1 vs. 0.1 ± 0.1; P = 0.008), and Nuak1 (0.9 ± 0.3 vs. 0.3 ± 0.1; P = 0.025) but lesser amounts of ATP (0.8 ± 0.1 vs. 1.5 ± 0.1; P < 0.001) and mitochondrial metabolism (74.8 ± 14.1 [pmol/min] vs. 169.6 ± 15.3; P < 0.001) in the cerebral cortex. Compared with baseline conditions, sevoflurane anesthesia induced Tau phosphorylation at its serine 202/threonine 205 residues (1.1 ± 0.4 vs. 0.2 ± 0.1; P < 0.001) in the 6-day-old mice but not in the 60-day-old mice (0.05 ± 0.04 vs. 0.03 ± 0.01; P = 0.186). The sevoflurane-induced Tau phosphorylation and cognitive impairment in the neonatal mice were both attenuated by the inhibition of Nuak1 and the treatment of vitamin K2. CONCLUSIONS: Higher brain Tau concentrations and lower brain mitochondrial metabolism in neonatal compared with adult mice contribute to developmental stage-dependent cognitive dysfunction after sevoflurane anesthesia.


Asunto(s)
Anestésicos por Inhalación/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Disfunción Cognitiva/etiología , Sevoflurano/farmacología , Proteínas tau/farmacología , Factores de Edad , Animales , Animales Recién Nacidos , Disfunción Cognitiva/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ratones
10.
ACS Chem Biol ; 15(6): 1445-1454, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32338864

RESUMEN

We have previously identified the natural product obtusaquinone (OBT) as a potent antineoplastic agent with promising in vivo activity in glioblastoma and breast cancer through the activation of oxidative stress; however, the molecular properties of this compound remained elusive. We used a multidisciplinary approach comprising medicinal chemistry, quantitative mass spectrometry-based proteomics, functional studies in cancer cells, and pharmacokinetic analysis, as well as mouse xenograft models to develop and validate novel OBT analogs and characterize the molecular mechanism of action of OBT. We show here that OBT binds to cysteine residues with a particular affinity to cysteine-rich Keap1, a member of the CUL3 ubiquitin ligase complex. This binding promotes an overall stress response and results in ubiquitination and proteasomal degradation of Keap1 and downstream activation of the Nrf2 pathway. Using positron emission tomography (PET) imaging with the PET-tracer 2-[18F]fluoro-2-deoxy-d-glucose (FDG), we confirm that OBT is able to penetrate the brain and functionally target brain tumors. Finally, we show that an OBT analog with improved pharmacological properties, including enhanced potency, stability, and solubility, retains the antineoplastic properties in a xenograft mouse model.


Asunto(s)
Antineoplásicos/farmacología , Cinamatos/farmacología , Ciclohexanonas/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteolisis/efectos de los fármacos , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Cinamatos/farmacocinética , Ciclohexanonas/farmacocinética , Cisteína/metabolismo , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
11.
Genome Biol ; 21(1): 33, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039742

RESUMEN

BACKGROUND: Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. RESULTS: We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. CONCLUSIONS: These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.


Asunto(s)
Elementos Ricos en Adenilato y Uridilato , Resistencia a Antineoplásicos , Procesamiento Postranscripcional del ARN , Tristetraprolina/metabolismo , Animales , Ciclo Celular , Células Cultivadas , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células K562 , Células MCF-7 , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Células THP-1 , Transcriptoma , Tristetraprolina/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Proteomics ; 19(24): e1900155, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31697011

RESUMEN

Although the microcrustacean Daphnia is becoming an organism of choice for proteomic studies, protein expression across its life cycle have not been fully characterized. Proteomes of adult females, juveniles, asexually produced embryos, and the ephippia-resting stages containing sexually produced diapausing freezing- and desiccation-resistant embryos are analyzed. Overall, proteins with known molecular functions are more likely to be detected than proteins with no detectable orthology. Similarly, proteins with stronger gene model support in two independent genome assemblies can be detected, than those without such support. This suggests that the proteomics pipeline can be applied to verify hypothesized proteins, even given questionable reference gene models. In particular, upregulation of vitellogenins and downregulation of actins and myosins in embryos of both types, relative to juveniles and adults, and overrepresentation of cell-cycle related proteins in the developing embryos, relative to diapausing embryos and adults, are observed. Upregulation of small heat-shock proteins and peroxidases, as well as overrepresentation of stress-response proteins in the ephippium relative to the asexually produced non-diapausing embryos, is found. The ephippium also shows upregulation of three trehalose-synthesis proteins and downregulation of a trehalose hydrolase, consistent with the role of trehalose in protection against freezing and desiccation.


Asunto(s)
Daphnia/embriología , Daphnia/metabolismo , Regulación del Desarrollo de la Expresión Génica , Estadios del Ciclo de Vida , Proteoma/análisis , Animales , Daphnia/crecimiento & desarrollo , Proteómica
14.
Integr Biol (Camb) ; 11(7): 301-314, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31617572

RESUMEN

Inflammatory bowel disease (IBD) is a chronic and debilitating disorder that has few treatment options due to a lack of comprehensive understanding of its molecular pathogenesis. We used multiplexed mass spectrometry to collect high-content information on protein phosphorylation in two different mouse models of IBD. Because the biological function of the vast majority of phosphorylation sites remains unknown, we developed Substrate-based Kinase Activity Inference (SKAI), a methodology to infer kinase activity from phosphoproteomic data. This approach draws upon prior knowledge of kinase-substrate interactions to construct custom lists of kinases and their respective substrate sites, termed kinase-substrate sets that employ prior knowledge across organisms. This expansion as much as triples the amount of prior knowledge available. We then used these sets within the Gene Set Enrichment Analysis framework to infer kinase activity based on increased or decreased phosphorylation of its substrates in a dataset. When applied to the phosphoproteomic datasets from the two mouse models, SKAI predicted largely non-overlapping kinase activation profiles. These results suggest that chronic inflammation may arise through activation of largely divergent signaling networks. However, the one kinase inferred to be activated in both mouse models was mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2 or MK2), a serine/threonine kinase that functions downstream of p38 stress-activated mitogen-activated protein kinase. Treatment of mice with active colitis with ATI450, an orally bioavailable small molecule inhibitor of the MK2 pathway, reduced inflammatory signaling in the colon and alleviated the clinical and histological features of inflammation. These studies establish MK2 as a therapeutic target in IBD and identify ATI450 as a potential therapy for the disease.


Asunto(s)
Colitis/enzimología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Administración Oral , Animales , Análisis por Conglomerados , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Inflamación , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Fosforilación , Análisis de Componente Principal , Proteómica , Ratas , Transducción de Señal , Terminología como Asunto , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Nat Commun ; 10(1): 2854, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253781

RESUMEN

SETD1A, a Set1/COMPASS family member maintaining histone-H3-lysine-4 (H3K4) methylation on transcriptionally active promoters, is overexpressed in breast cancer. Here, we show that SETD1A supports mitotic processes and consequentially, its knockdown induces senescence. SETD1A, through promoter H3K4 methylation, regulates several genes orchestrating mitosis and DNA-damage responses, and its depletion causes chromosome misalignment and segregation defects. Cell cycle arrest in SETD1A knockdown senescent cells is independent of mutations in p53, RB and p16, known senescence mediators; instead, it is sustained through transcriptional suppression of SKP2, which degrades p27 and p21. Rare cells escaping senescence by restoring SKP2 expression display genomic instability. In > 200 cancer cell lines and in primary circulating tumor cells, SETD1A expression correlates with genes promoting mitosis and cell cycle suggesting a broad role in suppressing senescence induced by aberrant mitosis. Thus, SETD1A is essential to maintain mitosis and proliferation and its suppression unleashes the tumor suppressive effects of senescence.


Asunto(s)
Senescencia Celular/fisiología , Regulación de la Expresión Génica/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Mitosis/fisiología , Línea Celular Tumoral , N-Metiltransferasa de Histona-Lisina/genética , Histonas , Humanos , Metilación , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
16.
Cell ; 178(1): 160-175.e27, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31155233

RESUMEN

Single-cell technologies have described heterogeneity across tissues, but the spatial distribution and forces that drive single-cell phenotypes have not been well defined. Combining single-cell RNA and protein analytics in studying the role of stromal cancer-associated fibroblasts (CAFs) in modulating heterogeneity in pancreatic cancer (pancreatic ductal adenocarcinoma [PDAC]) model systems, we have identified significant single-cell population shifts toward invasive epithelial-to-mesenchymal transition (EMT) and proliferative (PRO) phenotypes linked with mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling. Using high-content digital imaging of RNA in situ hybridization in 195 PDAC tumors, we quantified these EMT and PRO subpopulations in 319,626 individual cancer cells that can be classified within the context of distinct tumor gland "units." Tumor gland typing provided an additional layer of intratumoral heterogeneity that was associated with differences in stromal abundance and clinical outcomes. This demonstrates the impact of the stroma in shaping tumor architecture by altering inherent patterns of tumor glands in human PDAC.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Animales , Proliferación Celular , Técnicas de Cocultivo , Transición Epitelial-Mesenquimal , Femenino , Células HEK293 , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Quinasas Activadas por Mitógenos/metabolismo , RNA-Seq , Factor de Transcripción STAT3/metabolismo , Células del Estroma/metabolismo , Transfección
18.
Mol Cell ; 73(5): 985-1000.e6, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30711375

RESUMEN

Hyper-phosphorylation of RB controls its interaction with E2F and inhibits its tumor suppressor properties. However, during G1 active RB can be mono-phosphorylated on any one of 14 CDK phosphorylation sites. Here, we used quantitative proteomics to profile protein complexes formed by each mono-phosphorylated RB isoform (mP-RB) and identified the associated transcriptional outputs. The results show that the 14 sites of mono-phosphorylation co-ordinate RB's interactions and confer functional specificity. All 14 mP-RBs interact with E2F/DP proteins, but they provide different shades of E2F regulation. RB mono-phosphorylation at S811, for example, alters RB transcriptional activity by promoting its association with NuRD complexes. The greatest functional differences between mP-RBs are evident beyond the cell cycle machinery. RB mono-phosphorylation at S811 or T826 stimulates the expression of oxidative phosphorylation genes, increasing cellular oxygen consumption. These results indicate that RB activation signals are integrated in a phosphorylation code that determines the diversity of RB activity.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Neoplasias de la Mama/genética , Línea Celular Tumoral , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Mutación , Fosforilación Oxidativa , Fosforilación , Unión Proteica , Proteómica/métodos , Proteína de Retinoblastoma/genética , Transducción de Señal/genética , Transcripción Genética
19.
Genes Dev ; 33(1-2): 75-89, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30567999

RESUMEN

Numerous DNA repair and signaling proteins function at DNA damage sites to protect the genome. Here, we show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites, allowing identification of ZPET (zinc finger protein proximal to RAD eighteen)/ZNF280C as a potential DNA damage response (DDR) protein. ZPET binds ssDNA and localizes to DNA double-strand breaks (DSBs) and stalled replication forks. In vitro, ZPET inhibits MRE11 binding to ssDNA. In cells, ZPET delays MRE11 binding to chromatin after DSB formation and slows DNA end resection through binding ssDNA. ZPET hinders resection independently of 53BP1 and HELB. Cells lacking ZPET displayed enhanced homologous recombination (HR), accelerated replication forks under stress, and increased resistance to DSBs and PARP inhibition. These results not only reveal ZPET as an HR repressor but also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins.


Asunto(s)
Biotinilación/métodos , Daño del ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga/genética , Factores de Transcripción/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Línea Celular , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Técnicas de Silenciamiento del Gen , Humanos , Proteína Homóloga de MRE11/metabolismo , Unión Proteica , Transporte de Proteínas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
20.
Nat Cell Biol ; 20(7): 811-822, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29941929

RESUMEN

G protein αs (GNAS) mediates receptor-stimulated cAMP signalling, which integrates diverse environmental cues with intracellular responses. GNAS is mutationally activated in multiple tumour types, although its oncogenic mechanisms remain elusive. We explored this question in pancreatic tumourigenesis where concurrent GNAS and KRAS mutations characterize pancreatic ductal adenocarcinomas (PDAs) arising from intraductal papillary mucinous neoplasms (IPMNs). By developing genetically engineered mouse models, we show that GnasR201C cooperates with KrasG12D to promote initiation of IPMN, which progress to invasive PDA following Tp53 loss. Mutant Gnas remains critical for tumour maintenance in vivo. This is driven by protein-kinase-A-mediated suppression of salt-inducible kinases (Sik1-3), associated with induction of lipid remodelling and fatty acid oxidation. Comparison of Kras-mutant pancreatic cancer cells with and without Gnas mutations reveals striking differences in the functions of this network. Thus, we uncover Gnas-driven oncogenic mechanisms, identify Siks as potent tumour suppressors, and demonstrate unanticipated metabolic heterogeneity among Kras-mutant pancreatic neoplasms.


Asunto(s)
Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Reprogramación Celular/genética , Cromograninas/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Metabolismo de los Lípidos/genética , Mutación , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Cromograninas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Represión Enzimática , Ácidos Grasos/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes ras , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Mutantes , Ratones Transgénicos , Oxidación-Reducción , Neoplasias Pancreáticas/patología , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Factores de Tiempo , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...