Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 5572, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019926

RESUMEN

The capillary-venous pathology cerebral cavernous malformation (CCM) is caused by loss of CCM1/Krev interaction trapped protein 1 (KRIT1), CCM2/MGC4607, or CCM3/PDCD10 in some endothelial cells. Mutations of CCM genes within the brain vasculature can lead to recurrent cerebral hemorrhages. Pharmacological treatment options are urgently needed when lesions are located in deeply-seated and in-operable regions of the central nervous system. Previous pharmacological suppression screens in disease models of CCM led to the discovery that treatment with retinoic acid improved CCM phenotypes. This finding raised a need to investigate the involvement of retinoic acid in CCM and test whether it has a curative effect in preclinical mouse models. Here, we show that components of the retinoic acid synthesis and degradation pathway are transcriptionally misregulated across disease models of CCM. We complemented this analysis by pharmacologically modifying retinoic acid levels in zebrafish and human endothelial cell models of CCM, and in acute and chronic mouse models of CCM. Our pharmacological intervention studies in CCM2-depleted human umbilical vein endothelial cells (HUVECs) and krit1 mutant zebrafish showed positive effects when retinoic acid levels were increased. However, therapeutic approaches to prevent the development of vascular lesions in adult chronic murine models of CCM were drug regiment-sensitive, possibly due to adverse developmental effects of this hormone. A treatment with high doses of retinoic acid even worsened CCM lesions in an adult chronic murine model of CCM. This study provides evidence that retinoic acid signaling is impaired in the CCM pathophysiology and suggests that modification of retinoic acid levels can alleviate CCM phenotypes.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Adulto , Humanos , Animales , Ratones , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Pez Cebra/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Encéfalo/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
2.
Stroke ; 51(4): 1272-1278, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31992178

RESUMEN

Background and Purpose- Cerebral cavernous malformations (CCMs) are vascular malformations of the brain that lead to cerebral hemorrhages. A pharmacological treatment is needed especially for patients with nonoperable deep-seated lesions. We and others obtained CCM mouse models that were useful for mechanistic studies and rapid trials testing the preventive effects of candidate drugs. The shortened lifespan of acute mouse models hampered evaluation of compounds that would not only prevent lesion appearance but also cure preexisting lesions. Indirubin-3'-monoxime previously demonstrated its efficacy to reverse the cardiac phenotype of ccm2m201 zebrafish mutants and to prevent lesion development in an acute CCM2 mouse model. In the present article, we developed and characterized a novel chronic CCM2 mouse model and evaluated the curative therapeutic effect of indirubin-3'-monoxime after CCM lesion development. Methods- The chronic mouse model was obtained by a postnatal induction of brain-endothelial-cell-specific ablation of the Ccm2 gene using the inducible Slco1c1-CreERT2 mouse line. Results- We obtained a fully penetrant novel CCM chronic mouse model without any obvious off-target phenotypes and compatible with long-term survival. By 3 months of age, CCM lesions ranging in size from small isolated lesions to multiple caverns developed throughout the brain. Lesion burden was quantified in animals from 1 week to 5 months of age. Clear signs of intracerebral hemorrhages were noticed in brain-endothelial-cell-specific ablation of the Ccm2 gene. In contrast with its preventive effect in the acute CCM2 mouse model, a 20 mg/kg indirubin-3'-monoxime treatment for 3 weeks in 3-month old animals neither had any beneficial effect on the lesion burden nor alleviated cerebral hemorrhages. Conclusions- The brain-endothelial-cell-specific ablation of the Ccm2 gene chronic model is a strongly improved disease model for the CCM community whose challenge today is to decipher which candidate drugs might have a curative effect on patients' preexisting lesions. Visual Overview- An online visual overview is available for this article.


Asunto(s)
Encéfalo/patología , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Proteínas de Microfilamentos/genética , Animales , Neoplasias del Sistema Nervioso Central/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/deficiencia
3.
EMBO Mol Med ; 10(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30181117

RESUMEN

Cerebral cavernous malformations (CCMs) are vascular lesions in the central nervous system causing strokes and seizures which currently can only be treated through neurosurgery. The disease arises through changes in the regulatory networks of endothelial cells that must be comprehensively understood to develop alternative, non-invasive pharmacological therapies. Here, we present the results of several unbiased small-molecule suppression screens in which we applied a total of 5,268 unique substances to CCM mutant worm, zebrafish, mouse, or human endothelial cells. We used a systems biology-based target prediction tool to integrate the results with the whole-transcriptome profile of zebrafish CCM2 mutants, revealing signaling pathways relevant to the disease and potential targets for small-molecule-based therapies. We found indirubin-3-monoxime to alleviate the lesion burden in murine preclinical models of CCM2 and CCM3 and suppress the loss-of-CCM phenotypes in human endothelial cells. Our multi-organism-based approach reveals new components of the CCM regulatory network and foreshadows novel small-molecule-based therapeutic applications for suppressing this devastating disease in patients.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Hemangioma Cavernoso del Sistema Nervioso Central/fisiopatología , Animales , Caenorhabditis elegans , Técnicas Citológicas/métodos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Indoles/metabolismo , Ratones , Oximas/metabolismo , Transducción de Señal/efectos de los fármacos , Biología de Sistemas/métodos , Pez Cebra
4.
J Cell Sci ; 131(15)2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30030370

RESUMEN

Endothelial integrity relies on a mechanical crosstalk between intercellular and cell-matrix interactions. This crosstalk is compromised in hemorrhagic vascular lesions of patients carrying loss-of-function mutations in cerebral cavernous malformation (CCM) genes. RhoA/ROCK-dependent cytoskeletal remodeling is central to the disease, as it causes unbalanced cell adhesion towards increased cell-extracellular matrix adhesions and destabilized cell-cell junctions. This study reveals that CCM proteins directly orchestrate ROCK1 and ROCK2 complementary roles on the mechanics of the endothelium. CCM proteins act as a scaffold, promoting ROCK2 interactions with VE-cadherin and limiting ROCK1 kinase activity. Loss of CCM1 (also known as KRIT1) produces excessive ROCK1-dependent actin stress fibers and destabilizes intercellular junctions. Silencing of ROCK1 but not ROCK2 restores the adhesive and mechanical homeostasis of CCM1 and CCM2-depleted endothelial monolayers, and rescues the cardiovascular defects of ccm1 mutant zebrafish embryos. Conversely, knocking down Rock2 but not Rock1 in wild-type zebrafish embryos generates defects reminiscent of the ccm1 mutant phenotypes. Our study uncovers the role of the CCM1-CCM2 complex in controlling ROCK1 and ROCK2 to preserve endothelial integrity and drive heart morphogenesis. Moreover, it solely identifies the ROCK1 isoform as a potential therapeutic target for the CCM disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Endoteliales/metabolismo , Proteína KRIT1/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Western Blotting , Cadherinas/genética , Cadherinas/metabolismo , Proteínas Portadoras/genética , Bovinos , Células Endoteliales/citología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunoprecipitación , Proteína KRIT1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra , Quinasas Asociadas a rho/genética
5.
Bioinformatics ; 33(5): 701-709, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27797778

RESUMEN

Motivation: Most computational approaches for the analysis of omics data in the context of interaction networks have very long running times, provide single or partial, often heuristic, solutions and/or contain user-tuneable parameters. Results: We introduce local enrichment analysis (LEAN) for the identification of dysregulated subnetworks from genome-wide omics datasets. By substituting the common subnetwork model with a simpler local subnetwork model, LEAN allows exact, parameter-free, efficient and exhaustive identification of local subnetworks that are statistically dysregulated, and directly implicates single genes for follow-up experiments.Evaluation on simulated and biological data suggests that LEAN generally detects dysregulated subnetworks better, and reflects biological similarity between experiments more clearly than standard approaches. A strong signal for the local subnetwork around Von Willebrand Factor (VWF), a gene which showed no change on the mRNA level, was identified by LEAN in transcriptome data in the context of the genetic disease Cerebral Cavernous Malformations (CCM). This signal was experimentally found to correspond to an unexpected strong cellular effect on the VWF protein. LEAN can be used to pinpoint statistically significant local subnetworks in any genome-scale dataset. Availability and Implementation: The R-package LEANR implementing LEAN is supplied as supplementary material and available on CRAN ( https://cran.r-project.org ). Contacts: benno@pasteur.fr or tournier-lasserve@univ-paris-diderot.fr. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Redes Reguladoras de Genes , Programas Informáticos , Transcriptoma , Animales , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Humanos , Ratones , Proteínas/genética , Factor de von Willebrand/genética
6.
Proc Natl Acad Sci U S A ; 112(27): 8421-6, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26109568

RESUMEN

Cerebral cavernous malformation (CCM) is a disease of the central nervous system causing hemorrhage-prone multiple lumen vascular malformations and very severe neurological consequences. At present, the only recommended treatment of CCM is surgical. Because surgery is often not applicable, pharmacological treatment would be highly desirable. We describe here a murine model of the disease that develops after endothelial-cell-selective ablation of the CCM3 gene. We report an early, cell-autonomous, Wnt-receptor-independent stimulation of ß-catenin transcription activity in CCM3-deficient endothelial cells both in vitro and in vivo and a triggering of a ß-catenin-driven transcription program that leads to endothelial-to-mesenchymal transition. TGF-ß/BMP signaling is then required for the progression of the disease. We also found that the anti-inflammatory drugs sulindac sulfide and sulindac sulfone, which attenuate ß-catenin transcription activity, reduce vascular malformations in endothelial CCM3-deficient mice. This study opens previously unidentified perspectives for an effective pharmacological therapy of intracranial vascular cavernomas.


Asunto(s)
Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Hemangioma Cavernoso del Sistema Nervioso Central/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Sulindac/análogos & derivados , Animales , Antiinflamatorios no Esteroideos/farmacología , Proteínas Reguladoras de la Apoptosis , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sulindac/farmacología , Factor de Crecimiento Transformador beta/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
7.
Stroke ; 46(5): 1337-43, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25791711

RESUMEN

BACKGROUND AND PURPOSE: Cerebral cavernous malformation (CCM) is a neurovascular dysplasia characterized by conglomerates of enlarged endothelial channels in the central nervous system, which are almost devoid of pericytes or smooth muscle cells. This disease is caused by loss-of-function mutations in CCM1, CCM2, or CCM3 genes in endothelial cells, making blood vessels highly susceptible to angiogenic stimuli. CCM1- and CCM3-silenced endothelial cells have a reduced expression of the Notch ligand Delta-like 4 (DLL4) resulting in impaired Notch signaling and irregular sprouting angiogenesis. This study aimed to address if DLL4, which is exclusively expressed on endothelial cells, may influence interactions of endothelial cells with pericytes, which express Notch3 as the predominant Notch receptor. METHODS: Genetic manipulation of primary human endothelial cells and brain pericytes. Transgenic mouse models were also used. RESULTS: Endothelial cell-specific ablation of Ccm1 and Ccm2 in different mouse models led to the formation of CCM-like lesions, which were poorly covered by periendothelial cells. CCM1 silencing in endothelial cells caused decreased Notch3 activity in cocultured pericytes. DLL4 proteins stimulated Notch3 receptors on human brain pericytes. Active Notch3 induced expression of PDGFRB2, N-Cadherin, HBEGF, TGFB1, NG2, and S1P genes. Notch3 signaling in pericytes enhanced the adhesion strength of pericytes to endothelial cells, limited their migratory and invasive behavior, and enhanced their antiangiogenic function. Pericytes silenced for Notch3 expression were more motile and could not efficiently repress angiogenesis. CONCLUSIONS: The data suggest that Notch signaling in pericytes is important to maintain the quiescent vascular phenotype. Deregulated Notch signaling may, therefore, contribute to the pathogenesis of CCM.


Asunto(s)
Endotelio Vascular/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de la Membrana/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Pericitos/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Encéfalo/citología , Proteínas de Unión al Calcio , Células Endoteliales/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Malformaciones Arteriovenosas Intracraneales/genética , Malformaciones Arteriovenosas Intracraneales/patología , Proteína KRIT1 , Proteínas de la Membrana/genética , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/fisiología , Proteínas Asociadas a Microtúbulos/genética , Cultivo Primario de Células , Proteínas Proto-Oncogénicas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
8.
Dev Cell ; 32(2): 181-90, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25625207

RESUMEN

Mechanotransduction pathways are activated in response to biophysical stimuli during the development or homeostasis of organs and tissues. In zebrafish, the blood-flow-sensitive transcription factor Klf2a promotes VEGF-dependent angiogenesis. However, the means by which the Klf2a mechanotransduction pathway is regulated to prevent continuous angiogenesis remain unknown. Here we report that the upregulation of klf2 mRNA causes enhanced egfl7 expression and angiogenesis signaling, which underlies cardiovascular defects associated with the loss of cerebral cavernous malformation (CCM) proteins in the zebrafish embryo. Using CCM-protein-depleted human umbilical vein endothelial cells, we show that the misexpression of KLF2 mRNA requires the extracellular matrix-binding receptor ß1 integrin and occurs in the absence of blood flow. Downregulation of ß1 integrin rescues ccm mutant cardiovascular malformations in zebrafish. Our work reveals a ß1 integrin-Klf2-Egfl7-signaling pathway that is tightly regulated by CCM proteins. This regulation prevents angiogenic overgrowth and ensures the quiescence of endothelial cells.


Asunto(s)
Movimiento Celular/fisiología , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Integrina beta1/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Neovascularización Patológica/metabolismo , Proteínas/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Adhesión Celular/fisiología , Movimiento Celular/genética , Neoplasias del Sistema Nervioso Central/metabolismo , Familia de Proteínas EGF , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Mecanotransducción Celular/fisiología , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/fisiología , Pez Cebra
9.
Am J Hum Genet ; 94(3): 385-94, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24581742

RESUMEN

Moyamoya is a cerebrovascular condition characterized by a progressive stenosis of the terminal part of the internal carotid arteries (ICAs) and the compensatory development of abnormal "moyamoya" vessels. The pathophysiological mechanisms of this condition, which leads to ischemic and hemorrhagic stroke, remain unknown. It can occur as an isolated cerebral angiopathy (so-called moyamoya disease) or in association with various conditions (moyamoya syndromes). Here, we describe an autosomal-recessive disease leading to severe moyamoya and early-onset achalasia in three unrelated families. This syndrome is associated in all three families with homozygous mutations in GUCY1A3, which encodes the α1 subunit of soluble guanylate cyclase (sGC), the major receptor for nitric oxide (NO). Platelet analysis showed a complete loss of the soluble α1ß1 guanylate cyclase and showed an unexpected stimulatory role of sGC within platelets. The NO-sGC-cGMP pathway is a major pathway controlling vascular smooth-muscle relaxation, vascular tone, and vascular remodeling. Our data suggest that alterations of this pathway might lead to an abnormal vascular-remodeling process in sensitive vascular areas such as ICA bifurcations. These data provide treatment options for affected individuals and strongly suggest that investigation of GUCY1A3 and other members of the NO-sGC-cGMP pathway is warranted in both isolated early-onset achalasia and nonsyndromic moyamoya.


Asunto(s)
Acalasia del Esófago/metabolismo , Guanilato Ciclasa/genética , Guanilato Ciclasa/fisiología , Enfermedad de Moyamoya/metabolismo , Óxido Nítrico/química , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/fisiología , Adolescente , Adulto , Plaquetas/metabolismo , Niño , Preescolar , GMP Cíclico/metabolismo , Femenino , Genotipo , Homocigoto , Humanos , Masculino , Músculo Liso Vascular/metabolismo , Mutación , Óxido Nítrico/metabolismo , Linaje , Adhesividad Plaquetaria , Agregación Plaquetaria , Guanilil Ciclasa Soluble , Adulto Joven
10.
J Cell Biol ; 202(3): 545-61, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23918940

RESUMEN

The endothelial CCM complex regulates blood vessel stability and permeability. Loss-of-function mutations in CCM genes are responsible for human cerebral cavernous malformations (CCMs), which are characterized by clusters of hemorrhagic dilated capillaries composed of endothelium lacking mural cells and altered sub-endothelial extracellular matrix (ECM). Association of the CCM1/2 complex with ICAP-1, an inhibitor of ß1 integrin, prompted us to investigate whether the CCM complex interferes with integrin signaling. We demonstrate that CCM1/2 loss resulted in ICAP-1 destabilization, which increased ß1 integrin activation and led to increased RhoA-dependent contractility. The resulting abnormal distribution of forces led to aberrant ECM remodeling around lesions of CCM1- and CCM2-deficient mice. ICAP-1-deficient vessels displayed similar defects. We demonstrate that a positive feedback loop between the aberrant ECM and internal cellular tension led to decreased endothelial barrier function. Our data support that up-regulation of ß1 integrin activation participates in the progression of CCM lesions by destabilizing intercellular junctions through increased cell contractility and aberrant ECM remodeling.


Asunto(s)
Fibronectinas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Integrina beta1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Adhesión Celular , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Proteína KRIT1 , Ratones , Ratones Endogámicos , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Modelos Biológicos , Proteínas Proto-Oncogénicas/deficiencia
11.
Nature ; 498(7455): 492-6, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23748444

RESUMEN

Cerebral cavernous malformation (CCM) is a vascular dysplasia, mainly localized within the brain and affecting up to 0.5% of the human population. CCM lesions are formed by enlarged and irregular blood vessels that often result in cerebral haemorrhages. CCM is caused by loss-of-function mutations in one of three genes, namely CCM1 (also known as KRIT1), CCM2 (OSM) and CCM3 (PDCD10), and occurs in both sporadic and familial forms. Recent studies have investigated the cause of vascular dysplasia and fragility in CCM, but the in vivo functions of this ternary complex remain unclear. Postnatal deletion of any of the three Ccm genes in mouse endothelium results in a severe phenotype, characterized by multiple brain vascular malformations that are markedly similar to human CCM lesions. Endothelial-to-mesenchymal transition (EndMT) has been described in different pathologies, and it is defined as the acquisition of mesenchymal- and stem-cell-like characteristics by the endothelium. Here we show that endothelial-specific disruption of the Ccm1 gene in mice induces EndMT, which contributes to the development of vascular malformations. EndMT in CCM1-ablated endothelial cells is mediated by the upregulation of endogenous BMP6 that, in turn, activates the transforming growth factor-ß (TGF-ß) and bone morphogenetic protein (BMP) signalling pathway. Inhibitors of the TGF-ß and BMP pathway prevent EndMT both in vitro and in vivo and reduce the number and size of vascular lesions in CCM1-deficient mice. Thus, increased TGF-ß and BMP signalling, and the consequent EndMT of CCM1-null endothelial cells, are crucial events in the onset and progression of CCM disease. These studies offer novel therapeutic opportunities for this severe, and so far incurable, pathology.


Asunto(s)
Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Animales , Proteína Morfogenética Ósea 6/antagonistas & inhibidores , Proteína Morfogenética Ósea 6/metabolismo , Proteína Morfogenética Ósea 6/farmacología , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Humanos , Proteína KRIT1 , Ratones , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba
12.
J Exp Med ; 208(9): 1835-47, 2011 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-21859843

RESUMEN

Cerebral cavernous malformations (CCM) are vascular malformations of the central nervous system (CNS) that lead to cerebral hemorrhages. Familial CCM occurs as an autosomal dominant condition caused by loss-of-function mutations in one of the three CCM genes. Constitutive or tissue-specific ablation of any of the Ccm genes in mice previously established the crucial role of Ccm gene expression in endothelial cells for proper angiogenesis. However, embryonic lethality precluded the development of relevant CCM mouse models. Here, we show that endothelial-specific Ccm2 deletion at postnatal day 1 (P1) in mice results in vascular lesions mimicking human CCM lesions. Consistent with CCM1/3 involvement in the same human disease, deletion of Ccm1/3 at P1 in mice results in similar CCM lesions. The lesions are located in the cerebellum and the retina, two organs undergoing intense postnatal angiogenesis. Despite a pan-endothelial Ccm2 deletion, CCM lesions are restricted to the venous bed. Notably, the consequences of Ccm2 loss depend on the developmental timing of Ccm2 ablation. This work provides a highly penetrant and relevant CCM mouse model.


Asunto(s)
Proteínas Portadoras/genética , Malformaciones Vasculares del Sistema Nervioso Central/metabolismo , Hemorragia Cerebral/metabolismo , Endotelio Vascular/metabolismo , Proteínas de Microfilamentos/genética , Animales , Proteínas Portadoras/metabolismo , Malformaciones Vasculares del Sistema Nervioso Central/genética , Malformaciones Vasculares del Sistema Nervioso Central/patología , Malformaciones Vasculares del Sistema Nervioso Central/fisiopatología , Cerebelo/irrigación sanguínea , Cerebelo/metabolismo , Cerebelo/patología , Hemorragia Cerebral/genética , Hemorragia Cerebral/patología , Hemorragia Cerebral/fisiopatología , Modelos Animales de Enfermedad , Endotelio Vascular/patología , Eliminación de Gen , Humanos , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Retina/metabolismo , Retina/patología , Retina/fisiopatología
13.
J Cell Sci ; 123(Pt 7): 1073-80, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20332120

RESUMEN

Little is known about the molecular mechanisms that regulate the organization of vascular lumen. In this paper we show that lumen formation correlates with endothelial polarization. Adherens junctions (AJs) and VE-cadherin (VEC, encoded by CDH5) are required for endothelial apicobasal polarity in vitro and during embryonic development. Silencing of CDH5 gene expression leads to abrogation of endothelial polarity accompanied by strong alterations in lumenal structure. VEC co-distributes with members of the Par polarity complex (Par3 and PKCzeta) and is needed for activation of PKCzeta. CCM1 is encoded by the CCM1 gene, which is mutated in 60% of patients affected by cerebral cavernous malformation (CCM). The protein interacts with VEC and directs AJ organization and AJ association with the polarity complex, both in cell-culture models and in human CCM1 lesions. Both VEC and CCM1 control Rap1 concentration at cell-cell junctions. We propose that VEC, CCM1 and Rap1 form a signaling complex. In the absence of any of these proteins, AJs are dismantled, cell polarity is lost and vascular lumenal structure is severely altered.


Asunto(s)
Neoplasias Encefálicas/genética , Células Endoteliales/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas/metabolismo , Uniones Adherentes/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Neoplasias Encefálicas/patología , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Polaridad Celular/genética , Células Endoteliales/patología , Predisposición Genética a la Enfermedad , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Humanos , Proteína KRIT1 , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Complejos Multiproteicos/metabolismo , Polimorfismo Genético , Unión Proteica/genética , Proteínas Proto-Oncogénicas/genética , ARN Interferente Pequeño/genética , Transducción de Señal , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo
14.
FEBS J ; 277(5): 1070-5, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20096038

RESUMEN

Cerebral cavernous malformations (CCM) are vascular lesions which can occur as a sporadic (80% of the cases) or familial autosomal dominant form (20%). Three CCM genes have been identified: CCM1/KRIT1, CCM2/MGC4607 and CCM3/PDCD10. Almost 80% of CCM patients affected with a genetic form of the disease harbor a heterozygous germline mutation in one of these three genes. Recent work has shown that a two-hit mechanism is involved in CCM pathogenesis which is caused by a complete loss of any of the three CCM proteins within endothelial cells lining the cavernous capillary cavities. These data were an important step towards the elucidation of the mechanisms of this condition.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central/genética , Animales , Predisposición Genética a la Enfermedad , Hemangioma Cavernoso del Sistema Nervioso Central/fisiopatología , Humanos , Proteína KRIT1 , Proteínas Asociadas a Microtúbulos/clasificación , Proteínas Asociadas a Microtúbulos/genética , Proteínas Proto-Oncogénicas/clasificación , Proteínas Proto-Oncogénicas/genética
15.
Dis Model Mech ; 2(3-4): 168-77, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19259391

RESUMEN

Cerebral cavernous malformations (CCM) are vascular malformations of the brain that lead to cerebral hemorrhages. In 20% of CCM patients, this results from an autosomal dominant condition caused by loss-of-function mutations in one of the three CCM genes. High expression levels of the CCM genes in the neuroepithelium indicate that CCM lesions might be caused by a loss of function of these genes in neural cells rather than in vascular cells. However, their in vivo function, particularly during cerebral angiogenesis, is totally unknown. We developed mice with constitutive and tissue-specific CCM2 deletions to investigate CCM2 function in vivo. Constitutive deletion of CCM2 leads to early embryonic death. Deletion of CCM2 from neuroglial precursor cells does not lead to cerebrovascular defects, whereas CCM2 is required in endothelial cells for proper vascular development. Deletion of CCM2 from endothelial cells severely affects angiogenesis, leading to morphogenic defects in the major arterial and venous blood vessels and in the heart, and results in embryonic lethality at mid-gestation. These findings establish the essential role of endothelial CCM2 for proper vascular development and strongly suggest that the endothelial cell is the primary target in the cascade of events leading from CCM2 mutations to CCM cerebrovascular lesions.


Asunto(s)
Endotelio Vascular/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Proteínas de Microfilamentos/genética , Neovascularización Patológica , Animales , Vasos Sanguíneos/patología , Células Madre Embrionarias/citología , Eliminación de Gen , Técnicas Genéticas , Genotipo , Hemangioma Cavernoso del Sistema Nervioso Central/fisiopatología , Humanos , Ratones , Ratones Noqueados , Modelos Genéticos , Mutación
16.
Transplantation ; 83(12): 1595-601, 2007 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-17589343

RESUMEN

BACKGROUND: Chemokines are well-established to function in the recruitment of leukocytes into allografts in the course of rejection. Moreover, some studies have indicated that there are organ-specific differences in chemokine function, but the mechanism accounting for this difference is not known. METHODS: Fully major histocompatibility complex-mismatched vascularized cardiac transplants or skin transplants were performed using BALB/c (H-2d), C57BL/6 (H-2b), MCP-1-/- (H-2b) and CXCR3-/- (H-2b) mice as donors or recipients. Also, skin grafts (H-2b) were placed onto SCID mice (H-2d) that received BALB/c splenocytes (H-2d) by adoptive transfer either at the time of transplantation, or after a period of 28 days. RESULTS: Cardiac allografts in MCP-1-/- recipients survived significantly longer (P<0.0005) than wild-type (WT) controls. However, there was no prolongation of survival when MCP-1-/- grafts were used a donors in WT mice. In contrast, the absence of donor but not recipient MCP-1 prolonged skin allograft survival. WT donor cardiac grafts in CXCR3-/- recipients had a modest prolongation of survival (P<0.0005), whereas CXCR3-/- donor cardiac grafts in WT recipients were rejected similar to controls. Also, while recipient CXCR3 had no effect on the rejection of skin, CXCR3-/- donor skin grafts survived significantly longer than WT controls. This survival advantage was lost when vascularized CXCR3-/- skin grafts were used as donors in the SCID model of rejection. CONCLUSION: Recipient derived MCP-1 and CXCR3 are functional in the rejection of vascularized, but not nonvascularized, allografts. In contrast, donor-derived MCP-1 and CXCR3 are functional in nonvascularized, but not vascularized grafts.


Asunto(s)
Quimiocina CCL2/fisiología , Rechazo de Injerto/patología , Trasplante de Corazón/inmunología , Receptores de Quimiocina/fisiología , Trasplante de Piel/inmunología , Animales , Quimiocina CCL2/deficiencia , Quimiocina CCL2/genética , Supervivencia de Injerto , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos , Receptores CXCR3 , Receptores de Quimiocina/deficiencia , Receptores de Quimiocina/genética , Trasplante Homólogo
17.
J Biol Chem ; 281(29): 20148-59, 2006 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16644735

RESUMEN

Lnk, with APS and SH2-B (Src homology 2-B), belongs to a family of SH2-containing proteins with potential adaptor functions. Lnk regulates growth factor and cytokine receptor-mediated pathways implicated in lymphoid, myeloid, and platelet homeostasis. We have previously shown that Lnk is expressed and up-regulated in vascular endothelial cells (ECs) in response to tumor necrosis factor-alpha (TNFalpha). In this study, we have shown that, in ECs, Lnk down-regulates the expression, at both mRNA and protein levels, of the proinflammatory molecules VCAM-1 and E-selectin induced by TNFalpha. Mechanistically, our data indicated that, in response to TNFalpha, NFkappaB/p65 phosphorylation and translocation as well as IkappaBalpha phosphorylation and degradation were unchanged, suggesting that Lnk does not modulate NFkappaB activity. However, Lnk activates phosphatidylinositol 3-kinase (PI3K) as reflected by Akt phosphorylation. Our results identify endothelial nitric-oxide synthase as a downstream target of Lnk-mediated activation of the PI3K/Akt pathway and HO-1 as a new substrate of Akt. We found that sustained Lnk-mediated activation of PI3K in TNFalpha-activated ECs correlated with the inhibition of ERK1/2 phosphorylation, whereas phosphorylation of p38 and c-Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) was unchanged. ERK1/2 inhibition decreases VCAM-1 expression in TNFalpha-treated ECs. Collectively, our results identify the adaptor Lnk as a negative regulator in the TNFalpha-signaling pathway mediating ERK inhibition and suggest a role for Lnk in the interplay between PI3K and ERK triggered by TNFalpha in ECs.


Asunto(s)
Endotelio Vascular/fisiología , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteínas/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Molécula 1 de Adhesión Celular Vascular/genética , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Bases , Células Cultivadas , Cartilla de ADN , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular , Cinética , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Mensajero/genética , Proteínas Recombinantes/farmacología , Molécula 1 de Adhesión Celular Vascular/inmunología
18.
J Immunol ; 176(5): 3098-107, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16493069

RESUMEN

Vascular endothelial growth factor (VEGF), an angiogenesis factor, has recently been found to have potent proinflammatory properties in vivo. However, the mechanism by which it mediates inflammation is poorly understood. In this study, we have evaluated the function of VEGF on the induced expression and function of the T cell chemoattractant chemokine IFN-gamma-inducible protein of 10 kDa (IP-10). In vitro, we find that VEGF augments the effect of IFN-gamma on the induction of IP-10 mRNA and protein expression in endothelial cells. Moreover, we show that VEGF and IFN-gamma regulate the activation of the IP-10 promoter, and that the kinases PI3K, phosphoinositide-dependent kinase 1, and Akt act as intermediary signaling molecules for cytokine-inducible IP-10 transcriptional activation in endothelial cells. To examine whether VEGF is functional for IP-10 expression in vivo, Chinese hamster ovary cells that were designed to secrete VEGF were injected s.c. into the skin of nude mice and were found to mediate a time-dependent increase in IP-10 mRNA. This response was reduced in animals treated systemically with the PI3K inhibitor wortmannin. When the Chinese hamster ovary cells expressing VEGF plasmid were injected s.c. into C57BL/6 wild-type or CXCR3-/- mice, they elicited an inflammatory reaction in wild-type but not in CXCR3-/- mice. Collectively, these findings indicate that VEGF-induced augmentation of IP-10 expression is a major mechanism underlying its proinflammatory function.


Asunto(s)
Quimiocinas CXC/biosíntesis , Quimiocinas CXC/genética , Endotelio Vascular/fisiología , Interferón gamma/fisiología , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Células CHO , Células Cultivadas , Quimiocina CXCL10 , Cricetinae , Endotelio Vascular/citología , Humanos , Técnicas In Vitro , Leucocitos/metabolismo , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptores CXCR3 , Receptores de Quimiocina/deficiencia , Receptores de Quimiocina/genética , Transducción de Señal/genética
19.
Nephrol Ther ; 1(4): 228-33, 2005 Oct.
Artículo en Francés | MEDLINE | ID: mdl-16895689

RESUMEN

Lnk is an adaptator protein involved in B lymphocytes and platelet differentiation and in T lymphocyte activation. We previously reported on Lnk expression and regulation in endothelial cells (ECs) upon activation. In the present study, the involvement of Lnk in the tumor necrosis factor alpha (TNFalpha) pathway was investigated in vitro through Lnk overexpression in primary cultures of human endothelial cells. Using a recombinant adenovirus encoding human Lnk, we first demonstrated that Lnk overexpression does not induce vascular cell adhesion molecule-1 (VCAM-1) suggesting that Lnk does not promote ECs activation. However, Lnk overexpression significantly reduced TNFalpha-mediated expression of VCAM-1 (at mRNA and protein levels) in activated EC as compared with controls. Western blot analysis showed that Lnk overexpression in HUVEC was associated with phosphorylation of Akt kinase (at Ser 473) with no effect on IkappaBalpha, the specific inhibitor of NFkappaB, indicating that Lnk promotes activation of the phosphatidylinositol 3-kinase (PI3-kinase) pathway in ECs. Altogether, these results suggest that, in ECs, Lnk may participate to a regulatory pathway involving the PI3-kinase and modulating the inflammatory response.


Asunto(s)
Células Endoteliales/fisiología , Proteínas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Células Cultivadas , Humanos , Péptidos y Proteínas de Señalización Intracelular , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/biosíntesis
20.
J Am Soc Nephrol ; 15(9): 2429-39, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15339992

RESUMEN

HLA class I ligation on graft endothelial cells (EC) has been shown to promote graft arteriosclerosis and chronic allograft nephropathy. This study investigated transcriptional and functional changes mediated by anti-HLA antibodies (Ab), developed by transplant recipient, on vascular renal EC. For mimicking interactions that occur between alloantibodies and graft endothelium, HLA-typed primary cultures of human EC were incubated in vitro in the presence of monomorphic or polymorphic anti-HLA class I Ab. Gene expression analysis identified the upregulation of several molecules involved in cell signaling and proliferation, including the GTP-binding protein RhoA. It was demonstrated further that HLA class I ligation on EC induced a rapid translocation of RhoA to the cell membrane associated with F-actin stress fiber formation and cytoskeleton reorganization. Western blot analysis showed that anti-HLA class I Ab induced, in addition to RhoA, the activation of phosphatidylinositol 3-kinase, reflected by the phosphorylation of Akt (Ser473) and GSK3beta (Ser9), in EC. C3 exoenzyme, an inhibitor of RhoA, inhibited RhoA translocation in response to HLA class I ligation and reduced phosphatidylinositol 3-kinase activation. EC proliferation and cell cycle progression, examined by 5,6-carboxyfluorescein diacetate succinimidyl ester staining, demonstrated that anti-HLA-induced EC proliferation was efficiently prevented by the 3-hydroxy-3-methylglutaryl CoA reductase inhibitor simvastatin (0.1 micromol/L) through inhibition of RhoA geranylgeranylation. Taken together, these findings support the conclusion that RhoA is a key mediator of signaling pathways that lead to cytoskeletal reorganization and EC proliferation in response to alloantibodies that bind to HLA class I and demonstrate the specific and potent inhibitory effect of simvastatin on allostimulated EC growth.


Asunto(s)
Endotelio Vascular/citología , Endotelio Vascular/enzimología , Enfermedades Renales/inmunología , Trasplante de Riñón/efectos adversos , Trasplante de Riñón/inmunología , Fosfatidilinositol 3-Quinasas/fisiología , Inmunología del Trasplante/inmunología , Proteína de Unión al GTP rhoA/fisiología , División Celular/efectos de los fármacos , Enfermedad Crónica , Citoesqueleto/fisiología , Endotelio Vascular/efectos de los fármacos , Expresión Génica/inmunología , Genes MHC Clase I/inmunología , Humanos , Enfermedades Renales/etiología , Prenilación de Proteína/efectos de los fármacos , Simvastatina/farmacología , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...