Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 324(2): F152-F167, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36454701

RESUMEN

Vasopressin (VP)-regulated aquaporin-2 (AQP2) trafficking between cytoplasmic vesicles and the plasma membrane of kidney principal cells is essential for water homeostasis. VP affects AQP2 phosphorylation at several serine residues in the COOH-terminus; among them, serine 256 (S256) appears to be a major regulator of AQP2 trafficking. Mutation of this serine to aspartic acid, which mimics phosphorylation, induces constitutive membrane expression of AQP2. However, the intracellular location(s) at which S256 phosphorylation occurs remains elusive. Here, we used strategies to block AQP2 trafficking at different cellular locations in LLC-PK1 cells and monitored VP-stimulated phosphorylation of S256 at these sites by immunofluorescence and Western blot analysis with phospho-specific antibodies. Using methyl-ß-cyclodextrin, cold block or bafilomycin, and taxol, we blocked AQP2 at the plasma membrane, in the perinuclear trans-Golgi network, and in scattered cytoplasmic vesicles, respectively. Regardless of its cellular location, VP induced a significant increase in S256 phosphorylation, and this effect was not dependent on a functional microtubule cytoskeleton. To further investigate whether protein kinase A (PKA) was responsible for S256 phosphorylation in these cellular compartments, we created PKA-null cells and blocked AQP2 trafficking using the same procedures. We found that S256 phosphorylation was no longer increased compared with baseline, regardless of AQP2 localization. Taken together, our data indicate that AQP2 S256 phosphorylation can occur at the plasma membrane, in the trans-Golgi network, or in cytoplasmic vesicles and that this event is dependent on the expression of PKA in these cells.NEW & NOTEWORTHY Phosphorylation of aquaporin-2 by PKA at serine 256 (S256) occurs in various subcellular locations during its recycling itinerary, suggesting that the protein complex necessary for AQP2 S256 phosphorylation is present in these different recycling stations. Furthermore, we showed, using PKA-null cells, that PKA activity is required for vasopressin-induced AQP2 phosphorylation. Our data reveal a complex spatial pattern of intracellular AQP2 phosphorylation at S256, shedding new light on the role of phosphorylation in AQP2 membrane accumulation.


Asunto(s)
Acuaporina 2 , Serina , Animales , Acuaporina 2/genética , Acuaporina 2/metabolismo , Células LLC-PK1 , Fosforilación , Serina/metabolismo , Porcinos , Vasopresinas/farmacología , Vasopresinas/metabolismo , Espacio Intracelular/metabolismo
2.
Nat Commun ; 13(1): 2422, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35504916

RESUMEN

Chronic kidney diseases and acute kidney injury are mechanistically distinct kidney diseases. While chronic kidney diseases are associated with podocyte injury, acute kidney injury affects renal tubular epithelial cells. Despite these differences, a cardinal feature of both acute and chronic kidney diseases is dysregulated actin cytoskeleton. We have shown that pharmacological activation of GTPase dynamin ameliorates podocyte injury in murine models of chronic kidney diseases by promoting actin polymerization. Here we establish dynamin's role in modulating stiffness and polarity of renal tubular epithelial cells by crosslinking actin filaments into branched networks. Activation of dynamin's crosslinking capability by a small molecule agonist stabilizes the actomyosin cortex of the apical membrane against injury, which in turn preserves renal function in various murine models of acute kidney injury. Notably, a dynamin agonist simultaneously attenuates podocyte and tubular injury in the genetic murine model of Alport syndrome. Our study provides evidence for the feasibility and highlights the benefits of novel holistic nephron-protective therapies.


Asunto(s)
Lesión Renal Aguda , Podocitos , Insuficiencia Renal Crónica , Citoesqueleto de Actina , Lesión Renal Aguda/prevención & control , Animales , Dinaminas , Femenino , Humanos , Riñón/fisiología , Masculino , Ratones , Insuficiencia Renal Crónica/tratamiento farmacológico
3.
Am J Physiol Renal Physiol ; 321(2): F179-F194, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34180716

RESUMEN

The trafficking of proteins such as aquaporin-2 (AQP2) in the exocytotic pathway requires an active actin cytoskeleton network, but the mechanism is incompletely understood. Here, we show that the actin-related protein (Arp)2/3 complex, a key factor in actin filament branching and polymerization, is involved in the shuttling of AQP2 between the trans-Golgi network (TGN) and the plasma membrane. Arp2/3 inhibition (using CK-666) or siRNA knockdown blocks vasopressin-induced AQP2 membrane accumulation and induces the formation of distinct AQP2 perinuclear patches positive for markers of TGN-derived clathrin-coated vesicles. After a 20°C cold block, AQP2 formed perinuclear patches due to continuous endocytosis coupled with inhibition of exit from TGN-associated vesicles. Upon rewarming, AQP2 normally leaves the TGN and redistributes into the cytoplasm, entering the exocytotic pathway. Inhibition of Arp2/3 blocked this process and trapped AQP2 in clathrin-positive vesicles. Taken together, these results suggest that Arp2/3 is essential for AQP2 trafficking, specifically for its delivery into the post-TGN exocytotic pathway to the plasma membrane.NEW & NOTEWORTHY Aquaporin-2 (AQP2) undergoes constitutive recycling between the cytoplasm and plasma membrane, with an intricate balance between endocytosis and exocytosis. By inhibiting the actin-related protein (Arp)2/3 complex, we prevented AQP2 from entering the exocytotic pathway at the post-trans-Golgi network level and blocked AQP2 membrane accumulation. Arp2/3 inhibition, therefore, enables us to separate and target the exocytotic process, while not affecting endocytosis, thus allowing us to envisage strategies to modulate AQP2 trafficking and treat water balance disorders.


Asunto(s)
Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Acuaporina 2/metabolismo , Exocitosis/fisiología , Riñón/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Membrana Celular/metabolismo , Endocitosis/fisiología , Células LLC-PK1 , Fosforilación , Transporte de Proteínas/fisiología , Ratas , Porcinos
4.
Cells ; 9(4)2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340337

RESUMEN

We previously showed that in polarized Madin-Darby canine kidney (MDCK) cells, aquaporin-2 (AQP2) is continuously targeted to the basolateral plasma membrane from which it is rapidly retrieved by clathrin-mediated endocytosis. It then undertakes microtubule-dependent transcytosis toward the apical plasma membrane. In this study, we found that treatment with chlorpromazine (CPZ, an inhibitor of clathrin-mediated endocytosis) results in AQP2 accumulation in the basolateral, but not the apical plasma membrane of epithelial cells. In MDCK cells, both AQP2 and clathrin were concentrated in the basolateral plasma membrane after CPZ treatment (100 µM for 15 min), and endocytosis was reduced. Then, using rhodamine phalloidin staining, we found that basolateral, but not apical, F-actin was selectively reduced by CPZ treatment. After incubation of rat kidney slices in situ with CPZ (200 µM for 15 min), basolateral AQP2 and clathrin were increased in principal cells, which simultaneously showed a significant decrease of basolateral compared to apical F-actin staining. These results indicate that clathrin-dependent transcytosis of AQP2 is an essential part of its trafficking pathway in renal epithelial cells and that this process can be inhibited by selectively depolymerizing the basolateral actin pool using CPZ.


Asunto(s)
Actinas/metabolismo , Acuaporina 2/metabolismo , Clorpromazina/farmacología , Endocitosis , Células Epiteliales/metabolismo , Riñón/citología , Polimerizacion , Animales , Clatrina/metabolismo , Respuesta al Choque por Frío , Colforsina/farmacología , Perros , Endocitosis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células de Riñón Canino Madin Darby , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas , Transferrina/metabolismo , Tubulina (Proteína)/metabolismo
5.
Annu Rev Pharmacol Toxicol ; 60: 175-194, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31561739

RESUMEN

The ability to regulate water movement is vital for the survival of cells and organisms. In addition to passively crossing lipid bilayers by diffusion, water transport is also driven across cell membranes by osmotic gradients through aquaporin water channels. There are 13 aquaporins in human tissues, and of these, aquaporin-2 (AQP2) is the most highly regulated water channel in the kidney: The expression and trafficking of AQP2 respond to body volume status and plasma osmolality via the antidiuretic hormone, vasopressin (VP). Dysfunctional VP signaling in renal epithelial cells contributes to disorders of water balance, and research initially focused on regulating the major cAMP/PKA pathway to normalize urine concentrating ability. With the discovery of novel and more complex signaling networks that regulate AQP2 trafficking, promising therapeutic targets have since been identified. Several strategies based on data from preclinical studies may ultimately translate to the care of patients with defective water homeostasis.


Asunto(s)
Riñón/metabolismo , Desequilibrio Hidroelectrolítico/fisiopatología , Agua/metabolismo , Animales , Acuaporina 2/metabolismo , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Neurofisinas/metabolismo , Precursores de Proteínas/metabolismo , Transducción de Señal/fisiología , Vasopresinas/metabolismo , Equilibrio Hidroelectrolítico/fisiología
6.
PLoS One ; 14(8): e0219940, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31386675

RESUMEN

Men tend to dehydrate more than women after prolonged exercise, possibly due to lower water intake and higher perspiration rate. Women are prone to exercise-associated hyponatremia, primarily attributed to the higher water consumption causing hypervolemia. Since aquaporin-2 (AQP2) water channels in the kidney collecting duct (CD) principal cells (PCs) are involved in maintaining water balance, we investigated their role in sex-dependent water homeostasis in wild-type (WT) C57BL/6 mice. Because CD intercalated cells (ICs) may also be involved in water balance, we also assessed the urine concentrating ability of V-ATPase B1 subunit-deficient (Atp6v1b1-/-) mice. Upon 12-hour water deprivation, urine osmolality increased by 59% in WT female mice and by only 28% in males. This difference was abolished in Atp6v1b1-/- mice, in which dehydration induced a ~30% increase in urine osmolarity in both sexes. AQP2 levels were highest in WT females; female Atp6v1b1-/- mice had substantially lower AQP2 expression than WT females, comparable to the low AQP2 levels seen in both Atp6v1b1-/- and WT males. After dehydration, AQP2 relocates towards the PC apical pole, especially in the inner stripe and inner medulla, and to a greater extent in WT females than in WT males. This apparent sex-dependent concentrating advantage was absent in Atp6v1b1-/- females, whose reduced AQP2 apical relocation was similar to WT males. Accordingly, female mice concentrate urine better than males upon dehydration due to increased AQP2 expression and mobilization. Moreover, our data support the involvement of ICs in water homeostasis, at least partly mediated by V-ATPase, in a sex-dependent manner.


Asunto(s)
Eliminación de Gen , Homeostasis , Caracteres Sexuales , ATPasas de Translocación de Protón Vacuolares/deficiencia , ATPasas de Translocación de Protón Vacuolares/genética , Agua/metabolismo , Animales , Acuaporina 2/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Espacio Intracelular/metabolismo , Túbulos Renales Colectores/citología , Masculino , Ratones , Transporte de Proteínas/genética
7.
J Physiol ; 597(6): 1627-1642, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30488437

RESUMEN

KEY POINTS: Aquaporin-2 (AQP2) is crucial for water homeostasis, and vasopressin (VP) induces AQP2 membrane trafficking by increasing intracellular cAMP, activating PKA and causing phosphorylation of AQP2 at serine 256, 264 and 269 residues and dephosphorylation of serine 261 residue on the AQP2 C-terminus. It is thought that serine 256 is the master regulator of AQP2 trafficking, and its phosphorylation has to precede the change of phosphorylation state of other serine residues. We found that Src inhibition causes serine 256-independent AQP2 membrane trafficking and induces phosphorylation of serine 269 independently of serine 256. This targeted phosphorylation of serine 269 is important for Src inhibition-induced AQP2 membrane accumulation; without serine 269, Src inhibition exerts no effect on AQP2 trafficking. This result helps us better understand the independent pathways that can target different AQP2 residues, and design new strategies to induce or sustain AQP2 membrane expression when VP signalling is defective. ABSTRACT: Aquaporin-2 (AQP2) is essential for water homeostasis. Upon stimulation by vasopressin, AQP2 is phosphorylated at serine 256 (S256), S264 and S269, and dephosphorylated at S261. It is thought that S256 is the master regulator of AQP2 trafficking and membrane accumulation, and that its phosphorylation has to precede phosphorylation of other serine residues. In this study, we found that VP reduces Src kinase phosphorylation: by suppressing Src using the inhibitor dasatinib and siRNA, we could increase AQP2 membrane accumulation in cultured AQP2-expressing cells and in kidney collecting duct principal cells. Src inhibition increased exocytosis and inhibited clathrin-mediated endocytosis of AQP2, but exerted its effect in a cAMP, PKA and S256 phosphorylation (pS256)-independent manner. Despite the lack of S256 phosphorylation, dasatinib increased phosphorylation of S269, even in S256A mutant cells in which S256 phosphorylation cannot occur. To confirm the importance of pS269 in AQP2 re-distribution, we expressed an AQP2 S269A mutant in LLC-PK1 cells, and found that dasatinib no longer induced AQP2 membrane accumulation. In conclusion, Src inhibition causes phosphorylation of S269 independently of pS256, and induces AQP2 membrane accumulation by inhibiting clathrin-mediated endocytosis and increasing exocytosis. We conclude that S269 can be phosphorylated without pS256, and pS269 alone is important for AQP2 apical membrane accumulation under some conditions. These data increase our understanding of the independent pathways that can phosphorylate different residues in the AQP2 C-terminus, and suggest new strategies to target distinct AQP2 serine residues to induce membrane expression of this water channel when VP signalling is defective.


Asunto(s)
Acuaporina 2/metabolismo , Exocitosis , Familia-src Quinasas/metabolismo , Animales , Acuaporina 2/genética , Línea Celular , Dasatinib/farmacología , Masculino , Mutación Missense , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Porcinos , Vasopresinas/metabolismo , Familia-src Quinasas/antagonistas & inhibidores
8.
PLoS One ; 12(11): e0188006, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29155857

RESUMEN

The final adjustment of urine volume occurs in the inner medullary collecting duct (IMCD), chiefly mediated by the water channel aquaporin 2 (AQP2). With vasopressin stimulation, AQP2 accumulation in the apical plasma membrane of principal cells allows water reabsorption from the lumen. We report that FXYD1 (phospholemman), better known as a regulator of Na,K-ATPase, has a role in AQP2 trafficking. Daytime urine of Fxyd1 knockout mice was more dilute than WT despite similar serum vasopressin, but both genotypes could concentrate urine during water deprivation. FXYD1 was found in IMCD. In WT mice, phosphorylated FXYD1 was detected intracellularly, and vasopressin induced its dephosphorylation. We tested the hypothesis that the dilute urine in knockouts was caused by alteration of AQP2 trafficking. In WT mice at baseline, FXYD1 and AQP2 were not strongly co-localized, but elevation of vasopressin produced translocation of both FXYD1 and AQP2 to the apical plasma membrane. In kidney slices, baseline AQP2 distribution was more scattered in the Fxyd1 knockout than in WT. Apical recruitment of AQP2 occurred in vasopressin-treated Fxyd1 knockout slices, but upon vasopressin washout, there was more rapid reversal of apical AQP2 localization and more heterogeneous cytoplasmic distribution of AQP2. Notably, in sucrose gradients, AQP2 was present in a detergent-resistant membrane domain that had lower sedimentation density in the knockout than in WT, and vasopressin treatment normalized its density. We propose that FXYD1 plays a role in regulating AQP2 retention in apical membrane, and that this involves transfers between raft-like membrane domains in endosomes and plasma membranes.


Asunto(s)
Acuaporina 2/metabolismo , Endosomas/metabolismo , Túbulos Renales Colectores/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/genética , Fosfoproteínas/genética , Vesículas Transportadoras/metabolismo , Animales , Acuaporina 2/genética , Centrifugación por Gradiente de Densidad , Endosomas/química , Endosomas/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Regulación de la Expresión Génica , Médula Renal/citología , Médula Renal/efectos de los fármacos , Médula Renal/metabolismo , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/efectos de los fármacos , Masculino , Microdominios de Membrana/química , Microdominios de Membrana/efectos de los fármacos , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Microtomía , Fosfoproteínas/deficiencia , Fosforilación , Transporte de Proteínas , Sacarosa , Técnicas de Cultivo de Tejidos , Vesículas Transportadoras/química , Vesículas Transportadoras/efectos de los fármacos , Vasopresinas/genética , Vasopresinas/metabolismo , Vasopresinas/farmacología
9.
Proc Natl Acad Sci U S A ; 114(45): E9559-E9568, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078380

RESUMEN

Alterations in the activity/levels of the extralarge G protein α-subunit (XLαs) are implicated in various human disorders, such as perinatal growth retardation. Encoded by GNAS, XLαs is partly identical to the α-subunit of the stimulatory G protein (Gsα), but the cellular actions of XLαs remain poorly defined. Following an initial proteomic screen, we identified sorting nexin-9 (SNX9) and dynamins, key components of clathrin-mediated endocytosis, as binding partners of XLαs. Overexpression of XLαs in HEK293 cells inhibited internalization of transferrin, a process that depends on clathrin-mediated endocytosis, while its ablation by CRISPR/Cas9 in an osteocyte-like cell line (Ocy454) enhanced it. Similarly, primary cardiomyocytes derived from XLαs knockout (XLKO) pups showed enhanced transferrin internalization. Early postnatal XLKO mice showed a significantly higher degree of cardiac iron uptake than wild-type littermates following iron dextran injection. In XLKO neonates, iron and ferritin levels were elevated in heart and skeletal muscle, where XLαs is normally expressed abundantly. XLKO heart and skeletal muscle, as well as XLKO Ocy454 cells, showed elevated SNX9 protein levels, and siRNA-mediated knockdown of SNX9 in XLKO Ocy454 cells prevented enhanced transferrin internalization. In transfected cells, XLαs also inhibited internalization of the parathyroid hormone and type 2 vasopressin receptors. Internalization of transferrin and these G protein-coupled receptors was also inhibited in cells expressing an XLαs mutant missing the Gα portion, but not Gsα or an N-terminally truncated XLαs mutant unable to interact with SNX9 or dynamin. Thus, XLαs restricts clathrin-mediated endocytosis and plays a critical role in iron/transferrin uptake in vivo.


Asunto(s)
Clatrina/metabolismo , Endocitosis/fisiología , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Hierro/metabolismo , Animales , Sistemas CRISPR-Cas/fisiología , Línea Celular , Células HEK293 , Corazón/fisiología , Humanos , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Osteocitos/metabolismo , Proteómica/métodos , Receptores de Vasopresinas/metabolismo , Nexinas de Clasificación/metabolismo , Transferrina/metabolismo
10.
Am J Physiol Renal Physiol ; 313(2): F404-F413, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28381458

RESUMEN

Aquaporin 2 (AQP2) trafficking is regulated by phosphorylation and dephosphorylation of serine residues in the AQP2 COOH terminus. Vasopressin (VP) binding to its receptor (V2R) leads to a cascade of events that result in phosphorylation of serine 256 (S256), S264, and S269, but dephosphorylation of S261. To identify which phosphatase is responsible for VP-induced S261 dephosphorylation, we pretreated cells with different phosphatase inhibitors before VP stimulation. Sanguinarine, a specific protein phosphatase (PP) 2C inhibitor, but not inhibitors of PP1, PP2A (okadaic acid), or PP2B (cyclosporine), abolished VP-induced S261 dephosphorylation. However, sanguinarine and VP significantly increased phosphorylation of ERK, a kinase that can phosphorylate S261; inhibition of ERK by PD98059 partially decreased baseline S261 phosphorylation. These data support a role of ERK in S261 phosphorylation but suggest that, upon VP treatment, increased phosphatase activity overcomes the increase in ERK activity, resulting in overall dephosphorylation of S261. We also found that sanguinarine abolished VP-induced S261 dephosphorylation in cells expressing mutated AQP2 S256A, suggesting that the phosphorylation state of S261 is independent of S256. Sanguinarine alone did not induce AQP2 membrane trafficking, nor did it inhibit VP-induced AQP2 membrane accumulation in cells and kidney tissues, suggesting that S261 does not play an observable role in acute AQP2 membrane accumulation. In conclusion, PP2C activity is required for S261 AQP2 dephosphorylation upon VP stimulation, which occurs independently of S256 phosphorylation. Understanding the pathways involved in modulating PP2C will help elucidate the role of S261 in cellular events involving AQP2.


Asunto(s)
Acuaporina 2/metabolismo , Riñón/efectos de los fármacos , Vasopresinas/farmacología , Animales , Acuaporina 2/genética , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Técnicas In Vitro , Riñón/enzimología , Células LLC-PK1 , Mutación , Fosforilación , Proteína Fosfatasa 2C/antagonistas & inhibidores , Proteína Fosfatasa 2C/metabolismo , Transporte de Proteínas , Ratas Sprague-Dawley , Receptores de Vasopresinas/agonistas , Receptores de Vasopresinas/metabolismo , Serina , Transducción de Señal/efectos de los fármacos , Porcinos , Transfección , Vasopresinas/metabolismo
11.
Blood ; 129(4): 405-414, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-27864295

RESUMEN

Bone morphogenetic protein 6 (BMP6) signaling in hepatocytes is a central transcriptional regulator of the iron hormone hepcidin that controls systemic iron balance. How iron levels are sensed to regulate hepcidin production is not known, but local induction of liver BMP6 expression by iron is proposed to have a critical role. To identify the cellular source of BMP6 responsible for hepcidin and iron homeostasis regulation, we generated mice with tissue-specific ablation of Bmp6 in different liver cell populations and evaluated their iron phenotype. Efficiency and specificity of Cre-mediated recombination was assessed by using Cre-reporter mice, polymerase chain reaction of genomic DNA, and quantitation of Bmp6 messenger RNA expression from isolated liver cell populations. Localization of the BMP co-receptor hemojuvelin was visualized by immunofluorescence microscopy. Analysis of the Bmp6 conditional knockout mice revealed that liver endothelial cells (ECs) expressed Bmp6, whereas resident liver macrophages (Kupffer cells) and hepatocytes did not. Loss of Bmp6 in ECs recapitulated the hemochromatosis phenotype of global Bmp6 knockout mice, whereas hepatocyte and macrophage Bmp6 conditional knockout mice exhibited no iron phenotype. Hemojuvelin was localized on the hepatocyte sinusoidal membrane immediately adjacent to Bmp6-producing sinusoidal ECs. Together, these data demonstrate that ECs are the predominant source of BMP6 in the liver and support a model in which EC BMP6 has paracrine actions on hepatocyte hemojuvelin to regulate hepcidin transcription and maintain systemic iron homeostasis.


Asunto(s)
Proteína Morfogenética Ósea 6/genética , Células Endoteliales/metabolismo , Hemocromatosis/genética , Hepcidinas/genética , Hierro/metabolismo , Proteínas de la Membrana/genética , ARN Mensajero/genética , Animales , Proteína Morfogenética Ósea 6/deficiencia , Células Endoteliales/patología , Femenino , Proteínas Ligadas a GPI , Regulación de la Expresión Génica , Proteína de la Hemocromatosis , Hepatocitos/metabolismo , Hepatocitos/patología , Hepcidinas/metabolismo , Homeostasis/genética , Inmunofenotipificación , Integrasas/genética , Integrasas/metabolismo , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/patología , Hígado/metabolismo , Hígado/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Comunicación Paracrina , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética
12.
J Am Soc Nephrol ; 27(10): 3105-3116, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27694161

RESUMEN

Nephrogenic diabetes insipidus (NDI) is caused by impairment of vasopressin (VP) receptor type 2 signaling. Because potential therapies for NDI that target the canonical VP/cAMP/protein kinase A pathway have so far proven ineffective, alternative strategies for modulating aquaporin 2 (AQP2) trafficking have been sought. Successful identification of compounds by our high-throughput chemical screening assay prompted us to determine whether EGF receptor (EGFR) inhibitors stimulate AQP2 trafficking and reduce urine output. Erlotinib, a selective EGFR inhibitor, enhanced AQP2 apical membrane expression in collecting duct principal cells and reduced urine volume by 45% after 5 days of treatment in mice with lithium-induced NDI. Similar to VP, erlotinib increased exocytosis and decreased endocytosis in LLC-PK1 cells, resulting in a significant increase in AQP2 membrane accumulation. Erlotinib increased phosphorylation of AQP2 at Ser-256 and Ser-269 and decreased phosphorylation at Ser-261 in a dose-dependent manner. However, unlike VP, the effect of erlotinib was independent of cAMP, cGMP, and protein kinase A. Conversely, EGF reduced VP-induced AQP2 Ser-256 phosphorylation, suggesting crosstalk between VP and EGF in AQP2 trafficking and a role of EGF in water homeostasis. These results reveal a novel pathway that contributes to the regulation of AQP2-mediated water reabsorption and suggest new potential therapeutic strategies for NDI treatment.


Asunto(s)
Acuaporina 2/efectos de los fármacos , Acuaporina 2/fisiología , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Erlotinib/farmacología , Riñón/metabolismo , Agua/metabolismo , Animales , Membrana Celular/metabolismo , Ratones
13.
Artículo en Inglés | MEDLINE | ID: mdl-27638854

RESUMEN

INTRODUCTION: We aimed to examine the regulation of aquaporin 1 expression in an angiotensinogen transgenic mouse model, focusing on underlying mechanisms. METHODS: Male transgenic mice overexpressing rat angiotensinogen in their renal proximal tubular cells (RPTCs) and rat immortalised RPTCs stably transfected with rat angiotensinogen cDNA were used. RESULTS: Angiotensinogen-transgenic mice developed hypertension and nephropathy, changes that were either partially or completely attenuated by treatment with losartan or dual renin-angiotensin system blockade (losartan and perindopril), respectively, while hydralazine prevented hypertension but not nephropathy. Decreased expression of aquaporin 1 and heme oxygenase-1 and increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and sodium-hydrogen exchanger 3 were observed in RPTCs of angiotensinogen-transgenic mice and in angiotensinogen-transfected immortalised RPTCs. These parameters were normalised by dual renin-angiotensin system blockade. Both in vivo and in vitro studies identified a novel mechanism in which angiotensinogen overexpression in RPTCs enhances the cytosolic accumulation of Nrf2 via the phosphorylation of pGSK3ß Y216. Consequently, lower intranuclear Nrf2 levels are less efficient to trigger heme oxygenase-1 expression as a defence mechanism, which subsequently diminishes aquaporin 1 expression in RPTCs. CONCLUSIONS: Angiotensinogen-mediated downregulation of aquaporin 1 and Nrf2 signalling may play an important role in intrarenal renin-angiotensin system-induced hypertension and kidney injury.


Asunto(s)
Angiotensinógeno/metabolismo , Acuaporina 1/genética , Regulación hacia Abajo , Hemo-Oxigenasa 1/metabolismo , Túbulos Renales Proximales/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Animales , Acuaporina 1/metabolismo , Línea Celular , Proteínas de la Matriz Extracelular/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Inmunohistoquímica , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Túbulos Renales Proximales/patología , Ratones Transgénicos , Modelos Biológicos , Fosforilación , Ratas , Intercambiador 3 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/metabolismo , beta Catenina/metabolismo
14.
PLoS One ; 10(3): e0121419, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25799465

RESUMEN

Uncontrolled inflammation is one of the leading causes of kidney failure. Pro-inflammatory responses can occur in the absence of infection, a process called sterile inflammation. Here we show that the purinergic receptor P2Y14 (GPR105) is specifically and highly expressed in collecting duct intercalated cells (ICs) and mediates sterile inflammation in the kidney. P2Y14 is activated by UDP-glucose, a damage-associated molecular pattern molecule (DAMP) released by injured cells. We found that UDP-glucose increases pro-inflammatory chemokine expression in ICs as well as MDCK-C11 cells, and UDP-glucose activates the MEK1/2-ERK1/2 pathway in MDCK-C11 cells. These effects were prevented following inhibition of P2Y14 with the small molecule PPTN. Tail vein injection of mice with UDP-glucose induced the recruitment of neutrophils to the renal medulla. This study identifies ICs as novel sensors, mediators and effectors of inflammation in the kidney via P2Y14.


Asunto(s)
Inflamación/metabolismo , Túbulos Renales Colectores/patología , Receptores Purinérgicos P2Y/metabolismo , Uridina Difosfato Glucosa/farmacología , Animales , Células Cultivadas , Perros , Inflamación/inmunología , Inflamación/patología , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células de Riñón Canino Madin Darby , Masculino , Ratones , Neutrófilos/metabolismo
15.
Physiol Rep ; 2(12)2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25472608

RESUMEN

Na,K-ATPase generates the driving force for sodium reabsorption in the kidney. Na,K-ATPase functional properties are regulated by small proteins belonging to the FXYD family. In kidney FXYD2 is the most abundant: it is an inhibitory subunit expressed in almost every nephron segment. Its absence should increase sodium pump activity and promote Na(+) retention, however, no obvious renal phenotype was detected in mice with global deletion of FXYD2 (Arystarkhova et al. 2013). Here, increased total cortical Na,K-ATPase activity was documented in the Fxyd2(-/-) mouse, without increased α1ß1 subunit expression. We tested the hypothesis that adaptations occur in distal convoluted tubule (DCT), a major site of sodium adjustments. Na,K-ATPase immunoreactivity in DCT was unchanged, and there was no DCT hypoplasia. There was a marked activation of thiazide-sensitive sodium chloride cotransporter (NCC; Slc12a3) in DCT, predicted to increase Na(+) reabsorption in this segment. Specifically, NCC total increased 30% and NCC phosphorylated at T53 and S71, associated with activation, increased 4-6 fold. The phosphorylation of the closely related thick ascending limb (TAL) apical NKCC2 (Slc12a1) increased at least twofold. Abundance of the total and cleaved (activated) forms of ENaC α-subunit was not different between genotypes. Nonetheless, no elevation of blood pressure was evident despite the fact that NCC and NKCC2 are in states permissive for Na(+) retention. Activation of NCC and NKCC2 may reflect an intracellular linkage to elevated Na,K-ATPase activity or a compensatory response to Na(+) loss proximal to the TAL and DCT.

16.
Cell Rep ; 9(1): 180-192, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25284779

RESUMEN

Deficiencies in DNA-degrading nucleases lead to accumulation of self DNA and induction of autoimmunity in mice and in monogenic and polygenic human diseases. However, the sources of DNA and the mechanisms that trigger immunity remain unclear. We analyzed mice deficient for the lysosomal nuclease Dnase2a and observed elevated levels of undegraded DNA in both phagocytic and nonphagocytic cells. In nonphagocytic cells, the excess DNA originated from damaged DNA in the nucleus based on colocalization studies, live-cell imaging, and exacerbation by DNA-damaging agents. Removal of damaged DNA by Dnase2a required nuclear export and autophagy-mediated delivery of the DNA to lysosomes. Finally, DNA was found to accumulate in Dnase2a(-/-) or autophagy-deficient cells and induce inflammation via the Sting cytosolic DNA-sensing pathway. Our results reveal a cell-autonomous process for removal of damaged nuclear DNA with implications for conditions with elevated DNA damage, such as inflammation, cancer, and chemotherapy.


Asunto(s)
Daño del ADN , ADN/genética , ADN/metabolismo , Endodesoxirribonucleasas/deficiencia , Animales , Autofagia/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Humanos , Lisosomas/metabolismo , Ratones , Fagocitos/citología , Fagocitos/enzimología
17.
Am J Physiol Cell Physiol ; 307(7): C597-605, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24944200

RESUMEN

A reduction or loss of plasma membrane aquaporin 2 (AQP2) in kidney principal cells due to defective vasopressin (VP) signaling through the VP receptor causes excessive urine production, i.e., diabetes insipidus. The amount of AQP2 on the plasma membrane is regulated by a balance of exocytosis and endocytosis and is the rate limiting step for water reabsorption in the collecting duct. We describe here a systematic approach using high-throughput screening (HTS) followed by in vitro and in vivo assays to discover novel compounds that enhance vasopressin-independent AQP2 membrane expression. We performed initial chemical library screening with a high-throughput exocytosis fluorescence assay using LLC-PK1 cells expressing soluble secreted yellow fluorescent protein and AQP2. Thirty-six candidate exocytosis enhancers were identified. These compounds were then rescreened in AQP2-expressing cells to determine their ability to increase AQP2 membrane accumulation. Effective drugs were then applied to kidney slices in vitro. Three compounds, AG-490, ß-lapachone, and HA14-1 increased AQP2 membrane accumulation in LLC-PK1 cells, and both AG-490 and ß-lapachone were also effective in MDCK cells and principal cells in rat kidney slices. Finally, one compound, AG-490 (an EGF receptor and JAK-2 kinase inhibitor), decreased urine volume and increased urine osmolality significantly in the first 2-4 h after a single injection into VP-deficient Brattleboro rats. In conclusion, we have developed a systematic procedure for identifying new compounds that modulate AQP2 trafficking using initial HTS followed by in vitro assays in cells and kidney slices, and concluding with in vivo testing in an animal model.


Asunto(s)
Acuaporina 2/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Capacidad de Concentración Renal/efectos de los fármacos , Riñón/efectos de los fármacos , Tirfostinos/farmacología , Agentes Urológicos/farmacología , Animales , Acuaporina 2/genética , Acuaporina 2/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Perros , Exocitosis/efectos de los fármacos , Técnicas In Vitro , Riñón/metabolismo , Células LLC-PK1 , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Células de Riñón Canino Madin Darby , Microscopía Fluorescente , Concentración Osmolar , Transporte de Proteínas , Ratas Brattleboro , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Porcinos , Factores de Tiempo , Transfección , Regulación hacia Arriba
18.
J Biol Chem ; 288(39): 27849-60, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23935101

RESUMEN

The vasopressin type 2 receptor (V2R) is a critical G protein-coupled receptor (GPCR) for vertebrate physiology, including the balance of water and sodium ions. It is unclear how its two native hormones, vasopressin (VP) and oxytocin (OT), both stimulate the same cAMP/PKA pathway yet produce divergent antinatriuretic and antidiuretic effects that are either strong (VP) or weak (OT). Here, we present a new mechanism that differentiates the action of VP and OT on V2R signaling. We found that vasopressin, as opposed to OT, continued to generate cAMP and promote PKA activation for prolonged periods after ligand washout and receptor internalization in endosomes. Contrary to the classical model of arrestin-mediated GPCR desensitization, arrestins bind the VP-V2R complex yet extend rather than shorten the generation of cAMP. Signaling is instead turned off by the endosomal retromer complex. We propose that this mechanism explains how VP sustains water and Na(+) transport in renal collecting duct cells. Together with recent work on the parathyroid hormone receptor, these data support the existence of a novel "noncanonical" regulatory pathway for GPCR activation and response termination, via the sequential action of ß-arrestin and the retromer complex.


Asunto(s)
Arrestinas/metabolismo , Regulación de la Expresión Génica , Receptores de Vasopresinas/metabolismo , Transducción de Señal , Animales , Fármacos Antidiuréticos/farmacología , Acuaporina 2/metabolismo , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Perros , Endosomas/metabolismo , Células HEK293 , Humanos , Riñón/metabolismo , Ligandos , Células de Riñón Canino Madin Darby , Oxitocina/química , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , Sodio/metabolismo , beta-Arrestinas
19.
Nat Commun ; 4: 2189, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23877263

RESUMEN

The Ser/Thr Rho kinase 1 (ROCK1) is known to have major roles in a wide range of cellular activities, including those involved in tumour metastasis and apoptosis. Here we identify an indispensable function of ROCK1 in metabolic stress-induced autophagy. Applying a proteomics approach, we characterize Beclin1, a proximal component of the phosphoinositide 3-kinase class III lipid-kinase complex that induces autophagy, as an interacting partner of ROCK1. Upon nutrient deprivation, activated ROCK1 promotes autophagy by binding and phosphorylating Beclin1 at Thr119. This results in the specific dissociation of the Beclin1-Bcl-2 complex without affecting the Beclin1-UVRAG interaction. Conversely, inhibition of ROCK1 activity increases Beclin1-Bcl-2 association, thus reducing nutritional stress-mediated autophagy. Genetic knockout of ROCK1 function in mice also leads to impaired autophagy as evidenced by reduced autophagosome formation. These results show that ROCK1 acts as a prominent upstream regulator of Beclin1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Autofagia/genética , Regulación de la Expresión Génica , Proteínas de la Membrana/genética , Estrés Fisiológico , Quinasas Asociadas a rho/genética , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Comunicación Celular , Línea Celular Tumoral , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Fagosomas/metabolismo , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
20.
Autophagy ; 9(4): 550-67, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23380587

RESUMEN

Osmotic homeostasis is fundamental for most cells, which face recurrent alterations of environmental osmolality that challenge cell viability. Protein damage is a consequence of hypertonic stress, but whether autophagy contributes to the osmoprotective response is unknown. Here, we investigated the possible implications of autophagy and microtubule organization on the response to hypertonic stress. We show that hypertonicity rapidly induced long-lived protein degradation, LC3-II generation and Ptdlns3K-dependent formation of LC3- and ATG12-positive puncta. Lysosomotropic agents chloroquine and bafilomycin A 1, but not nutrient deprivation or rapamycin treatment, further increased LC3-II generation, as well as ATG12-positive puncta, indicating that hypertonic stress increases autophagic flux. Autophagy induction upon hypertonic stress enhanced cell survival since cell death was increased by ATG12 siRNA-mediated knockdown and reduced by rapamycin. We additionally showed that hypertonicity induces fast reorganization of microtubule networks, which is associated with strong reorganization of microtubules at centrosomes and fragmentation of Golgi ribbons. Microtubule remodeling was associated with pericentrosomal clustering of ATG12-positive autolysosomes that colocalized with SQSTM1/p62 and ubiquitin, indicating that autophagy induced by hypertonic stress is at least partly selective. Efficient autophagy by hypertonic stress required microtubule remodeling and was DYNC/dynein-dependent as autophagosome clustering was enhanced by paclitaxel-induced microtubule stabilization and was reduced by nocodazole-induced tubulin depolymerization as well as chemical (EHNA) or genetic [DCTN2/dynactin 2 (p50) overexpression] interference of DYNC activity. The data document a general and hitherto overlooked mechanism, where autophagy and microtubule remodeling play prominent roles in the osmoprotective response.


Asunto(s)
Autofagia/efectos de los fármacos , Soluciones Hipertónicas/farmacología , Microtúbulos/metabolismo , Fagosomas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Complejo Dinactina , Dineínas/metabolismo , Humanos , Células LLC-PK1 , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Fagosomas/efectos de los fármacos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA