Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Science ; 384(6693): 307-312, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38635712

RESUMEN

Magnetic skyrmions are topological magnetic textures that hold great promise as nanoscale bits of information in memory and logic devices. Although room-temperature ferromagnetic skyrmions and their current-induced manipulation have been demonstrated, their velocity has been limited to about 100 meters per second. In addition, their dynamics are perturbed by the skyrmion Hall effect, a motion transverse to the current direction caused by the skyrmion topological charge. Here, we show that skyrmions in compensated synthetic antiferromagnets can be moved by current along the current direction at velocities of up to 900 meters per second. This can be explained by the cancellation of the net topological charge leading to a vanishing skyrmion Hall effect. Our results open an important path toward the realization of logic and memory devices based on the fast manipulation of skyrmions in tracks.

2.
Biotechniques ; 76(5): 203-215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38573592

RESUMEN

In the absence of a DNA template, the ab initio production of long double-stranded DNA molecules of predefined sequences is particularly challenging. The DNA synthesis step remains a bottleneck for many applications such as functional assessment of ancestral genes, analysis of alternative splicing or DNA-based data storage. In this report we propose a fully in vitro protocol to generate very long double-stranded DNA molecules starting from commercially available short DNA blocks in less than 3 days using Golden Gate assembly. This innovative application allowed us to streamline the process to produce a 24 kb-long DNA molecule storing part of the Declaration of the Rights of Man and of the Citizen of 1789 . The DNA molecule produced can be readily cloned into a suitable host/vector system for amplification and selection.


Asunto(s)
ADN , ADN/genética , ADN/química , Almacenamiento y Recuperación de la Información/métodos , Humanos , Secuencia de Bases/genética , Clonación Molecular/métodos
3.
Nano Lett ; 24(12): 3557-3565, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38499397

RESUMEN

Magnetic skyrmions are topological spin textures which are envisioned as nanometer scale information carriers in magnetic memory and logic devices. The recent demonstrations of room temperature skyrmions and their current induced manipulation in ultrathin films were first steps toward the realization of such devices. However, important challenges remain regarding the electrical detection and the low-power nucleation of skyrmions, which are required for the read and write operations. Here, we demonstrate, using operando magnetic microscopy experiments, the electrical detection of a single magnetic skyrmion in a magnetic tunnel junction (MTJ) and its nucleation and annihilation by gate voltage via voltage control of magnetic anisotropy. The nucleated skyrmion can be manipulated by both gate voltages and external magnetic fields, leading to tunable intermediate resistance states. Our results unambiguously demonstrate the readout and voltage controlled write operations in a single MTJ device, which is a major milestone for low power skyrmion based technologies.

4.
Nat Commun ; 13(1): 5257, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071049

RESUMEN

Magnetic skyrmions are localized chiral spin textures, which offer great promise to store and process information at the nanoscale. In the presence of asymmetric exchange interactions, their chirality, which governs their dynamics, is generally considered as an intrinsic parameter set during the sample deposition. In this work, we experimentally demonstrate that a gate voltage can control this key parameter. We probe the chirality of skyrmions and chiral domain walls by observing the direction of their current-induced motion and show that a gate voltage can reverse it. This local and dynamical reversal of the chirality is due to a sign inversion of the interfacial Dzyaloshinskii-Moriya interaction that we attribute to ionic migration of oxygen under gate voltage. Micromagnetic simulations show that the chirality reversal is a continuous transformation, in which the skyrmion is conserved. This control of chirality with 2-3 V gate voltage can be used for skyrmion-based logic devices, yielding new functionalities.

5.
Nat Commun ; 13(1): 4807, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974009

RESUMEN

Magnetic skyrmions are topological spin textures that hold great promise as nanoscale information carriers in non-volatile memory and logic devices. While room-temperature magnetic skyrmions and their current-induced motion were recently demonstrated, the stray field resulting from their finite magnetisation and their topological charge limit their minimum size and reliable motion. Antiferromagnetic skyrmions allow to lift these limitations owing to their vanishing magnetisation and net zero topological charge, promising ultra-small and ultra-fast skyrmions. Here, we report on the observation of isolated skyrmions in compensated synthetic antiferromagnets at zero field and room temperature using X-ray magnetic microscopy. Micromagnetic simulations and an analytical model confirm the chiral antiferromagnetic nature of these skyrmions and allow the identification of the physical mechanisms controlling their size and stability. Finally, we demonstrate the nucleation of synthetic antiferromagnetic skyrmions via local current injection and ultra-fast laser excitation.

6.
Nano Lett ; 21(7): 2989-2996, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33740371

RESUMEN

Magnetic skyrmions are deemed to be the forerunners of novel spintronic memory and logic devices. While their observation and their current-driven motion at room temperature have been demonstrated, certain issues regarding their nucleation, stability, pinning, and skyrmion Hall effect still need to be overcome to realize functional devices. Here, we demonstrate that focused He+-ion-irradiation can be used to create and guide skyrmions in racetracks. We show that the reduction of the perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya interaction in the track defined by ion-irradiation leads to the formation of stable isolated skyrmions. Current-driven skyrmion motion experiments and simulations reveal that the skyrmions move along the irradiated track, resulting in the suppression of the skyrmion Hall effect, and that the maximum skyrmion velocity can be enhanced by tuning the magnetic properties. These results open up a new path to nucleate and guide magnetic skyrmions in racetrack devices.

7.
Nano Lett ; 18(11): 7362-7371, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30295499

RESUMEN

Magnetic skyrmions are topologically nontrivial spin textures which hold great promise as stable information carriers in spintronic devices at the nanoscale. One of the major challenges for developing novel skyrmion-based memory and logic devices is fast and controlled creation of magnetic skyrmions at ambient conditions. Here we demonstrate controlled generation of skyrmion bubbles and skyrmion bubble lattices from a ferromagnetic state in sputtered ultrathin magnetic films at room temperature by a single ultrafast (35 fs) laser pulse. The skyrmion bubble density increases with the laser fluence, and it finally becomes saturated, forming disordered hexagonal lattices. Moreover, we present that the skyrmion bubble lattice configuration leads to enhanced topological stability as compared to isolated skyrmions, suggesting its promising use in data storage. Our findings shed light on the optical approach to the skyrmion bubble lattice in commonly accessible materials, paving the road toward the emerging skyrmion-based memory and synaptic devices.

8.
Sci Rep ; 8(1): 12356, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120368

RESUMEN

Using first-principles calculations, we demonstrate several approaches to control Dzyaloshinskii-Moriya Interaction (DMI) in ultrathin films with perpendicular magnetic anisotropy. First, we find that DMI is significantly enhanced when the ferromagnetic (FM) layer is sandwiched between nonmagnetic (NM) layers inducing additive DMI in NM1/FM/NM2 structures. For instance, when two NM layers are chosen to induce DMI of opposite chirality in Co, e.g. NM1 representing Au, Ir, Al or Pb, and NM2 being Pt, the resulting DMI in NM1/Co/Pt trilayers is enhanced compared to Co/Pt bilayers. Moreover, DMI can be significantly enhanced further in case of using FM layer comprising Fe and Co layers. Namely, it is found that the DMI in Ir/Fe/Co/Pt structure can be enhanced by 80% compared to that of Co/Pt bilayers reaching a very large DMI amplitude of 5.59 meV/atom. Our second approach for enhancing DMI is to use oxide capping layer. We show that DMI is enhanced by 60% in Oxide/Co/Pt structures compared to Co/Pt bilayers. Moreover, we unveiled the DMI mechanism at Oxide/Co interface due to Rashba effect, which is different to Fert-Levy DMI at FM/NM interfaces. Finally, we demonstrate that DMI amplitude can be modulated using an electric field with an efficiency factor comparable to that of the electric field control of perpendicular magnetic anisotropy in transition metal/oxide interfaces. These approaches of DMI controlling pave the way for skyrmion and domain wall motion-based spintronic applications.

9.
Nano Lett ; 18(8): 4871-4877, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29924621

RESUMEN

Electric control of magnetism is a prerequisite for efficient and low-power spintronic devices. More specifically, in heavy metal-ferromagnet-insulator heterostructures, voltage gating has been shown to locally and dynamically tune magnetic properties such as interface anisotropy and saturation magnetization. However, its effect on interfacial Dzyaloshinskii-Moriya Interaction (DMI), which is crucial for the stability of magnetic skyrmions, has been challenging to achieve and has not been reported yet for ultrathin films. Here, we demonstrate a 130% variation of DMI with electric field in Ta/FeCoB/TaO x trilayer through Brillouin Light Spectroscopy (BLS). Using polar magneto-optical Kerr-effect microscopy, we further show a monotonic variation of DMI and skyrmionic bubble size with electric field with an unprecedented efficiency. We anticipate through our observations that a sign reversal of DMI with an electric field is possible, leading to a chirality switch. This dynamic manipulation of DMI establishes an additional degree of control to engineer programmable skyrmion-based memory or logic devices.

11.
Nat Nanotechnol ; 11(5): 449-54, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26809057

RESUMEN

Magnetic skyrmions are chiral spin structures with a whirling configuration. Their topological properties, nanometre size and the fact that they can be moved by small current densities have opened a new paradigm for the manipulation of magnetization at the nanoscale. Chiral skyrmion structures have so far been experimentally demonstrated only in bulk materials and in epitaxial ultrathin films, and under an external magnetic field or at low temperature. Here, we report on the observation of stable skyrmions in sputtered ultrathin Pt/Co/MgO nanostructures at room temperature and zero external magnetic field. We use high lateral resolution X-ray magnetic circular dichroism microscopy to image their chiral Néel internal structure, which we explain as due to the large strength of the Dzyaloshinskii-Moriya interaction as revealed by spin wave spectroscopy measurements. Our results are substantiated by micromagnetic simulations and numerical models, which allow the identification of the physical mechanisms governing the size and stability of the skyrmions.

12.
Nat Mater ; 15(3): 272-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26689141

RESUMEN

Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).


Asunto(s)
Fenómenos Magnéticos , Modelos Químicos , Estructura Molecular
13.
Nat Nanotechnol ; 11(2): 143-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26551017

RESUMEN

Magnetization reversal by an electric current is essential for future magnetic data storage technology, such as magnetic random access memories. Typically, an electric current is injected into a pillar-shaped magnetic element, and switching relies on the transfer of spin momentum from a ferromagnetic reference layer (an approach known as spin-transfer torque). Recently, an alternative technique has emerged that uses spin-orbit torque (SOT) and allows the magnetization to be reversed without a polarizing layer by transferring angular momentum directly from the crystal lattice. With spin-orbit torque, the current is no longer applied perpendicularly, but is in the plane of the magnetic thin film. Therefore, the current flow is no longer restricted to a single direction and can have any orientation within the film plane. Here, we use Kerr microscopy to examine spin-orbit torque-driven domain wall motion in Co/AlOx wires with different shapes and orientations on top of a current-carrying Pt layer. The displacement of the domain walls is found to be highly dependent on the angle between the direction of the current and domain wall motion, and asymmetric and nonlinear with respect to the current polarity. Using these insights, devices are fabricated in which magnetization switching is determined entirely by the geometry of the device.

14.
Nat Nanotechnol ; 8(8): 587-93, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23892985

RESUMEN

Recent demonstrations of magnetization switching induced by in-plane current injection in heavy metal/ferromagnetic heterostructures have drawn increasing attention to spin torques based on orbital-to-spin momentum transfer. The symmetry, magnitude and origin of spin-orbit torques (SOTs), however, remain a matter of debate. Here we report on the three-dimensional vector measurement of SOTs in AlOx/Co/Pt and MgO/CoFeB/Ta trilayers using harmonic analysis of the anomalous and planar Hall effects. We provide a general scheme to measure the amplitude and direction of SOTs as a function of the magnetization direction. Based on space and time inversion symmetry arguments, we demonstrate that heavy metal/ferromagnetic layers allow for two different SOTs having odd and even behaviour with respect to magnetization reversal. Such torques include strongly anisotropic field-like and spin transfer-like components, which depend on the type of heavy metal layer and annealing treatment. These results call for SOT models that go beyond the spin Hall and Rashba effects investigated thus far.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA