Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1788(7): 1452-7, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19376083

RESUMEN

Anammox bacteria possess unique membranes that are mainly comprised of phospholipids with extraordinary "ladderane" hydrocarbon chains containing 3 to 5 linearly concatenated cyclobutane moieties that have been postulated to form relatively impermeable membranes. In a previous study, we demonstrated that purified ladderane phospholipids form fluid-like mono- and bilayers that are tightly packed and relatively rigid. Here we studied the impact of temperature and the presence of bacteriohopanoids on the lipid density and acyl chain ordering in anammox membranes using Langmuir monolayer and fluorescence depolarization experiments on total lipid extracts. We showed that anammox membrane lipids of representatives of Candidatus "Kuenenia stuttgartiensis", Candidatus "Brocadia fulgida" and Candidatus "Scalindua" were closely packed and formed membranes with a relatively high acyl chain ordering at the temperatures at which the cells were grown. Our findings suggest that bacteriohopanoids might play a role in maintaining the membrane fluidity in anammox cells.


Asunto(s)
Bacterias/química , Membrana Celular/química , Fluidez de la Membrana , Lípidos de la Membrana/química , Fosfolípidos/química , Compuestos de Amonio Cuaternario/metabolismo , Bacterias/metabolismo , Fluorescencia , Temperatura
2.
Biochim Biophys Acta ; 1788(7): 1444-51, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19376084

RESUMEN

Anammox bacteria that are capable of anaerobically oxidizing ammonium (anammox) with nitrite to nitrogen gas produce unique membrane phospholipids that comprise hydrocarbon chains with three or five linearly condensed cyclobutane rings. To gain insight into the biophysical properties of these 'ladderane' lipids, we have isolated a ladderane phosphatidylcholine and a mixed ladderane phosphatidylethanolamine/phosphatidylglycerol lipid fraction and reconstituted these lipids in different membrane environments. Langmuir monolayer experiments demonstrated that the purified ladderane phospholipids form fluid films with a relatively high lipid packing density. Fluid-like behavior was also observed for ladderane lipids in bilayer systems as monitored by cryo-electron microscopy on large unilamellar vesicles (LUVs) and epi-fluorescence microscopy on giant unilamellar vesicles (GUVs). Analysis of the LUVs by fluorescence depolarization revealed a relatively high acyl chain ordering in the hydrophobic region of the ladderane phospholipids. Micropipette aspiration experiments were applied to study the mechanical properties of ladderane containing lipid bilayers and showed a relatively high apparent area compressibility modulus for ladderane containing GUVs, thereby confirming the fluid and acyl chain ordered characteristics of these lipids. The biophysical findings in this study support the previous postulation that dense membranes in anammox cells protect these microbes against the highly toxic and volatile anammox metabolites.


Asunto(s)
Bacterias/química , Membrana Celular/química , Fluidez de la Membrana , Lípidos de la Membrana/química , Fosfolípidos/química , Compuestos de Amonio Cuaternario/metabolismo , Bacterias/metabolismo , Fenómenos Mecánicos , Liposomas Unilamelares/química
3.
FEMS Microbiol Lett ; 258(2): 297-304, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16640588

RESUMEN

Anammox bacteria present in wastewater treatment systems and marine environments are capable of anaerobically oxidizing ammonium to dinitrogen gas. This anammox metabolism takes place in the anammoxosome which membrane is composed of lipids with peculiar staircase-like 'ladderane' hydrocarbon chains that comprise three or four linearly concatenated cyclobutane structures. Here, we applied high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to elucidate the full identity of these ladderane lipids. This revealed a wide variety of ladderane lipid species with either a phosphocholine or phosphoethanolamine polar headgroup attached to the glycerol backbone. In addition, in silico analysis of genome data gained insight into the machinery for the biosynthesis of the phosphocholine and phosphoethanolamine phospholipids in anammox bacteria.


Asunto(s)
Bacterias/metabolismo , Etanolaminas/química , Fosfolípidos/química , Fosforilcolina/química , Bacterias/genética , Bacterias/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Biología Computacional , Genoma Bacteriano , Espectrometría de Masas , Países Bajos , Fosfolípidos/biosíntesis , Fosfolípidos/clasificación , Microbiología del Agua
4.
Mol Biol Cell ; 17(2): 1006-17, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16339082

RESUMEN

To study the consequences of depleting the major membrane phospholipid phosphatidylcholine (PC), exponentially growing cells of a yeast cho2opi3 double deletion mutant were transferred from medium containing choline to choline-free medium. Cell growth did not cease until the PC level had dropped below 2% of total phospholipids after four to five generations. Increasing contents of phosphatidylethanolamine (PE) and phosphatidylinositol made up for the loss of PC. During PC depletion, the remaining PC was subject to acyl chain remodeling with monounsaturated species replacing diunsaturated species, as shown by mass spectrometry. The remodeling of PC did not require turnover by the SPO14-encoded phospholipase D. The changes in the PC species profile were found to reflect an overall shift in the cellular acyl chain composition that exhibited a 40% increase in the ratio of C16 over C18 acyl chains, and a 10% increase in the degree of saturation. The shift was stronger in the phospholipid than in the neutral lipid fraction and strongest in the species profile of PE. The shortening and increased saturation of the PE acyl chains were shown to decrease the nonbilayer propensity of PE. The results point to a regulatory mechanism in yeast that maintains intrinsic membrane curvature in an optimal range.


Asunto(s)
Fosfatidilcolinas/metabolismo , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Colina/metabolismo , Ácido Graso Desaturasas/metabolismo , Eliminación de Gen , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Metabolismo de los Lípidos , Espectrometría de Masas , Fenotipo , Fosfatidilcolinas/química , Fosfatidiletanolamina N-Metiltransferasa/genética , Fosfatidiletanolaminas/metabolismo , Fosfolipasa D/metabolismo , Fosfolípidos/química , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estearoil-CoA Desaturasa , Temperatura
5.
FEBS Lett ; 569(1-3): 173-7, 2004 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-15225629

RESUMEN

In yeast, the aminoalcohol phosphotransferases Ept1p and Cpt1p catalyze the final steps in the CDP-ethanolamine and CDP-choline routes leading to phosphatidylethanolamine (PE) and phosphatidylcholine (PC), respectively. To determine how these enzymes contribute to the molecular species profiles of PE and PC in vivo, wild-type, cpt1Delta, and ept1Delta cells were pulse labeled with deuterated ethanolamine and choline. Analysis of newly synthesized PE and PC using electrospray ionization tandem mass spectrometry revealed that PE and PC produced by Ept1p and Cpt1p have different species compositions, demonstrating that the enzymes consume distinct sets of diacylglycerol species in vivo. Using the characteristic phospholipid species profiles produced by Ept1p and Cpt1p as molecular fingerprints, it was also shown that in vivo CDP-monomethylethanolamine is preferentially used as substrate by Ept1p, whereas CDP-dimethylethanolamine and CDP-propanolamine are converted by Cpt1p.


Asunto(s)
Diacilglicerol Colinafosfotransferasa/metabolismo , Etanolaminofosfotransferasa/metabolismo , Fosfatidilcolinas/biosíntesis , Fosfatidiletanolaminas/biosíntesis , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato
6.
J Biol Chem ; 279(39): 40314-9, 2004 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-15258140

RESUMEN

Phosphatidylcholine (PC) is an important and abundant structural component of the membranes of eukaryotic cells. In the yeast Saccharomyces cerevisiae, the primary route for the biosynthesis of PC consists of three consecutive methylation steps of phosphatidylethanolamine (PE) catalyzed by the phospholipid N-methyltransferases Cho2p and Opi3p. To investigate how these biosynthetic enzymes contribute to the composition of the PC species profile, the precursor-product relationships between PE and newly synthesized PC were determined at the level of the molecular species by using electrospray ionization tandem mass spectrometry and stable isotope labeling. In vivo labeling of yeast cells for 10 min with [methyl-D3]methionine revealed the preferential methylation of di-C16:1 PE over a range of PE species compositions. A similar preferential conversion of di-C16:1 PE to PC was found in vitro upon incubating isolated microsomes with S-adenosyl[methyl-D3]methionine. Yeast opi3 and cho2 deletion strains were used to distinguish between the substrate selectivities of Cho2p and Opi3p, respectively. Both biosynthetic enzymes were found to participate in the speciesselective methylation with Cho2p contributing the most. The combined results indicate that the selective methylation of PE species by the methyltransferases plays an important role in shaping the steady-state profile of PC molecular species in yeast.


Asunto(s)
Metiltransferasas/fisiología , Fosfatidilcolinas/química , Fenómenos Bioquímicos , Bioquímica , Catálisis , Eliminación de Gen , Técnicas In Vitro , Metilación , Metiltransferasas/química , Modelos Biológicos , Fosfatidil-N-Metiletanolamina N-Metiltransferasa , Fosfatidiletanolaminas/química , Fosfolípidos/metabolismo , S-Adenosilmetionina/química , Saccharomyces cerevisiae/enzimología , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato , Factores de Tiempo
7.
Biochim Biophys Acta ; 1636(2-3): 205-12, 2004 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-15164768

RESUMEN

The fate of exogenous short-chain analogues of phosphatidylethanolamine and phosphatidylserine was studied in a deep-rough derivative of E. coli mutant strain AD93 that cannot synthesize phosphatidylethanolamine de novo. Using mass spectrometry, it was shown that dicaproyl(di 6:0)-phosphatidylethanolamine is extensively remodeled, eventually adopting the phosphatidylethanolamine species profile of the parental wild-type strain of AD93. Dicaproyl-phosphatidylserine was decarboxylated to form phosphatidylethanolamine, and yielded a species profile, which strongly resembled that of the introduced phosphatidylethanolamine. This demonstrates transport of phosphatidylserine to the cytosolic leaflet of the inner membrane. The changes of the species profile of phosphatidylethanolamine indicate that the short-chain phospholipids are most likely remodeled via two consecutive acyl chain substitutions, and at least part of this remodeling involves transport to the inner membrane.


Asunto(s)
Escherichia coli/metabolismo , Fosfatidiletanolaminas/metabolismo , Cromatografía en Capa Delgada , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas
8.
Biochemistry ; 42(10): 3054-9, 2003 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-12627972

RESUMEN

Phosphatidylcholine (PC), a major lipid class in the membranes of eukaryotes, is synthesized either via the triple methylation of phosphatidylethanolamine (PE) or via the CDP-choline route. To investigate whether the two biosynthetic routes contribute differently to the steady-state profile of PC species, i.e., PC molecules with specific acyl chain compositions, the pools of newly synthesized PC species were monitored by labeling Saccharomyces cerevisiae with deuterated precursors of the two routes, (methyl-D3)-methionine and (D13)-choline, respectively. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) revealed that the two PC biosynthetic pathways yield different sets of PC species, with the CDP-choline route contributing most to the molecular diversity. Moreover, yeast was shown to be capable of remodeling PC by acyl chain exchange at the sn-1 position of the glycerol backbone. Remodeling was found to be required to generate the steady-state species distribution of PC. This is the first study demonstrating a functional difference between the two biosynthetic routes in yeast.


Asunto(s)
Fosfatidilcolinas/biosíntesis , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Acilación , Citidililtransferasa de Colina-Fosfato/genética , Citidililtransferasa de Colina-Fosfato/metabolismo , Citidina Difosfato Colina/metabolismo , Deuterio/metabolismo , Esterificación , Metionina/análogos & derivados , Metionina/metabolismo , Metilación , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Fosfolipasas A/metabolismo , Fosfolípidos/química , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...