Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; 19(49): e2303974, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37590380

RESUMEN

Exploring highly efficient hydrogen evolution reaction (HER) electrocatalysts for large-scale water electrolysis in the full potential of hydrogen (pH) range is highly desirable, but it remains a significant challenge. Herein, a simple pathway is proposed to synthesize a hybrid electrocatalyst by decorating small metallic platinum (Pt) nanosheets on a large nickel telluride nanosheet (termed as PtNs /NiTe-Ns). The as-prepared PtNs /NiTe-Ns catalyst only requires overpotentials of 72, 162, and 65 mV to reach a high current density of 200 mA cm-2 in alkaline, neutral and acidic conditions, respectively. Theoretical calculations reveal that the combination of metallic Pt and NiTe-Ns subtly modulates the electronic redistribution at their interface, improves the charge-transfer kinetics, and enhances the performance of Ni active sites. The synergy between the Pt site and activated Ni site near the interface in PtNs /NiTe-Ns promotes the sluggish water-dissociation kinetics and optimizes the subsequent oxyhydrogen/hydrogen intermediates (OH*/H*) adsorption, accelerating the HER process. Additionally, the superhydrophilicity and superaerophobicity of PtNs /NiTe-Ns facilitate the mass transfer process and ensure the rapid desorption of generated bubbles, significantly enhancing overall alkaline water/saline water/seawater electrolysis catalytic activity and stability.

2.
Environ Sci Pollut Res Int ; 23(3): 2821-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26452656

RESUMEN

The use of nanoparticles (NPs) is of increasing significance due to their large potential for various applications. Great attention should be paid on the possible impacts of nanoparticles on the environment as large amounts of them may reach the environment by accident or voluntarily. Marine algae are potential organisms for usage in nanopollution bioremediation in aquatic system, because of their ability to adapt to long exposure to NPs. Thus, it is of prime importance to study the possible interactions of different NPs with microalgae in assessing their potential environmental risks. Most studies on potential environmental effects of ZnO and TiO2 NPs have been performed independently and following the widely accepted, standardized test systems, which had been developed for the characterization of chemicals. In this study, we have examined the cumulative effect of ZnO and TiO2 NPs on Picochlorum sp. in addition to the individual effects of these NPs over 32 days. Our results indicate that the toxicity and availability of NPs to marine algae are reduced by their aggregation and sedimentation. NPs are found to have a negative effect on algal growth and chlorophyll a concentration during the early growth stages. In contrast, the case is reversed during the late growth stages. There is no significant difference between the effect of the NPs when they are used separately and when both ZnO and TiO2 are used together in the test (P > 0.05).


Asunto(s)
Clorofila/metabolismo , Chlorophyta/efectos de los fármacos , Chlorophyta/crecimiento & desarrollo , Nanopartículas/toxicidad , Titanio/metabolismo , Óxido de Zinc/metabolismo , Clorofila A , Chlorophyta/metabolismo , Nanopartículas/química , Titanio/análisis , Titanio/toxicidad , Óxido de Zinc/análisis , Óxido de Zinc/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...