Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 129: 102500, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951616

RESUMEN

Consumption of seafood contaminated by phycotoxins produced by harmful algae is a major issue in human public health. Harmful algal blooms are driven by a multitude of environmental variables; therefore predicting human dietary exposure to phycotoxins based on these variables is a promising approach in health risk management. In this study, we attempted to predict the human health risks associated with Vulcanodinium rugosum and its neurotoxins, pinnatoxins (PnTXs), which have been regularly found in Mediterranean lagoons since their identification in 2011. Based on environmental variables collected over 1 year in four Mediterranean lagoons, we developed linear mixed models to predict the presence of V. rugosum and PnTX G contamination of mussels. We found that the occurrence of V. rugosum was significantly associated with seawater temperature. PnTX G contamination of mussels was highest in summer but persisted throughout the year. This contamination was significantly associated with seawater temperature and the presence of V. rugosum with a time lag, but not with dissolved PnTX G in seawater. By using the contamination model predictions and their potential variability/uncertainty, we calculated the human acute dietary exposures throughout the year and predicted that 25% of people who consume mussels could exceed the provisional acute benchmark value during the warmest periods. We suggest specific recommendations to monitor V. rugosum and PnTX G.


Asunto(s)
Alcaloides , Bivalvos , Dinoflagelados , Compuestos de Espiro , Animales , Humanos , Neurotoxinas
2.
Toxins (Basel) ; 15(3)2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36977108

RESUMEN

Vulcanodinium rugosum is an emerging benthopelagic neuro-toxic dinoflagellate species responsible for seasonal Pinnatoxins and Portimines contaminations of shellfish and marine animals. This species is challenging to detect in the environment, as it is present in low abundance and difficult to be identified using light microscopy. In this work, we developed a method using artificial substrates coupled with qPCR (AS-qPCR) to detect V. rugosum in a marine environment. This sensitive, specific and easy-to-standardize alternative to current techniques does not require specialized expertise in taxonomy. After determining the limits and specificity of the qPCR, we searched for the presence of V. rugosum in four French Mediterranean lagoons using artificial substrates collected every two weeks for one year. The AS-qPCR method revealed its occurrences in summer 2021 in every studied lagoon and detected cells in more samples than light microscopy. As V. rugosum development induces shellfish contamination even at low microalga densities, the AS-qPCR method is accurate and relevant for monitoring V. rugosum in a marine environment.


Asunto(s)
Dinoflagelados , Animales , Dinoflagelados/genética , Mariscos , Alimentos Marinos , Bioensayo
3.
Toxins (Basel) ; 14(6)2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35737062

RESUMEN

Pinnatoxins (PnTX) and Portimines (Prtn), two toxins produced by the benthic dinoflagellate Vulcanodinium rugosum, are known to be lethal to mice after intraperitoneal or oral administration. They are also known to accumulate in shellfish such as mussels and clams, but their effect on fish and the upper food chain remains unknown. In this work, juveniles of the fish Liza ramada (Mullet) were exposed to a strain of V. rugosum producing PnTX G and Prtn A. The fishes' viability and contamination were recorded at times interval. Results showed that L. ramada juveniles were able to feed on V. rugosum and that their tissues could be contaminated by PnTX G and Prtn A without impact on fish viability. Furthermore, the microalgae temporary cysts survived and germinated after fish gut passage. This study showed the potential of L. ramada to transfer PnTX and Prtn toxins to the upper food chain and to disseminate V. rugosum in environment.


Asunto(s)
Bivalvos , Dinoflagelados , Microalgas , Smegmamorpha , Animales , Peces , Ratones , Supervivencia Tisular
4.
Harmful Algae ; 115: 102234, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35623690

RESUMEN

French Mediterranean lagoons are frequently subject to shellfish contamination by Diarrheic Shellfish Toxins (DSTs) and Paralytic Shellfish Toxins (PSTs). To predict the effect of various environmental factors (temperature, salinity and turbidity) on the abundance of the major toxins producing genera, Dinophysis and Alexandrium, and the link with shellfish contamination, we analysed a 10-year dataset collected from 2010 to 2019 in two major shellfish farming lagoons, Thau and Leucate, using two methods: decision trees and Zero Inflated Negative Binomial (ZINB) linear regression models. Analysis of these decision trees revealed that the highest risk of Dinophysis bloom events occurred at temperature <16.3°C and salinity <27.8, and of Alexandrium at temperature ranging from 10.4 to 21.5°C and salinity >39.2. The highest risk of shellfish contaminations by DSTs and PSTs occurred during the set of conditions associated with high risk of bloom events. Linear regression prediction enables us to understand whether temperature and salinity influence the presence of Alexandrium and affect its abundance. However, Dinophysis linear regression could not be validated due to overdispersion issues. This work demonstrates the tools which could help sanitary management of shellfish rearing areas.


Asunto(s)
Dinoflagelados , Árboles de Decisión , Eutrofización , Modelos Lineales , Mariscos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...