Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4419, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811565

RESUMEN

Emperor penguins (Aptenodytes forsteri) are under increasing environmental pressure. Monitoring colony size and population trends of this Antarctic seabird relies primarily on satellite imagery recorded near the end of the breeding season, when light conditions levels are sufficient to capture images, but colony occupancy is highly variable. To correct population estimates for this variability, we develop a phenological model that can predict the number of breeding pairs and fledging chicks, as well as key phenological events such as arrival, hatching and foraging times, from as few as six data points from a single season. The ability to extrapolate occupancy from sparse data makes the model particularly useful for monitoring remotely sensed animal colonies where ground-based population estimates are rare or unavailable.


Asunto(s)
Tecnología de Sensores Remotos , Spheniscidae , Animales , Spheniscidae/fisiología , Tecnología de Sensores Remotos/métodos , Cruzamiento , Regiones Antárticas , Estaciones del Año , Reproducción/fisiología , Densidad de Población , Dinámica Poblacional , Femenino
2.
Nat Methods ; 11(12): 1242-4, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25362361

RESUMEN

Investigating wild animals while minimizing human disturbance remains an important methodological challenge. When approached by a remote-operated vehicle (rover) which can be equipped to make radio-frequency identifications, wild penguins had significantly lower and shorter stress responses (determined by heart rate and behavior) than when approached by humans. Upon immobilization, the rover-unlike humans-did not disorganize colony structure, and stress rapidly ceased. Thus, rovers can reduce human disturbance of wild animals and the resulting scientific bias.


Asunto(s)
Adaptación Psicológica , Conducta Animal , Frecuencia Cardíaca/fisiología , Actividades Humanas , Robótica , Spheniscidae/fisiología , Estrés Fisiológico , Animales , Animales Salvajes , Humanos
3.
PLoS One ; 9(6): e100404, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24963661

RESUMEN

Evaluating the demographic trends of marine top predators is critical to understanding the processes involved in the ongoing rapid changes in Antarctic ecosystems. However, the remoteness and logistical complexity of operating in Antarctica, especially during winter, make such an assessment difficult. Satellite imaging is increasingly recognised as a valuable method for remote animal population monitoring, yet its accuracy and reliability are still to be fully evaluated. We report here the first ground visit of an emperor penguin colony first discovered by satellite, but also the discovery of a second one not indicated by satellite survey at that time. Several successive remote surveys in this coastal region of East Antarctica, both before and after sudden local changes, had indeed only identified one colony. These two colonies (with a total of ca. 7,400 breeding pairs) are located near the Mertz Glacier in an area that underwent tremendous habitat change after the glacier tongue broke off in February 2010. Our findings therefore suggest that a satellite survey, although offering a major advance since it allows a global imaging of emperor penguin colonies, may miss certain colony locations when challenged by certain features of polar ecosystems, such as snow cover, evolving ice topology, and rapidly changing habitat. Moreover our survey shows that this large seabird has considerable potential for rapid adaptation to sudden habitat loss, as the colony detected in 2009 may have moved and settled on new breeding grounds. Overall, the ability of emperor penguin colonies to relocate following habitat modification underlines the continued need for a mix of remote sensing and field surveys (aerial photography and ground counts), especially in the less-frequented parts of Antarctica, to gain reliable knowledge about the population demography and dynamics of this flagship species of the Antarctic ecosystem.


Asunto(s)
Cruzamiento , Hielo , Imágenes Satelitales , Spheniscidae/fisiología , Animales , Regiones Antárticas , Ecosistema , Femenino , Masculino , Densidad de Población , Spheniscidae/crecimiento & desarrollo
4.
PLoS One ; 7(2): e30536, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22383965

RESUMEN

Observing spatial and temporal variations of marine biodiversity from non-destructive techniques is central for understanding ecosystem resilience, and for monitoring and assessing conservation strategies, e.g. Marine Protected Areas. Observations are generally obtained through Underwater Visual Censuses (UVC) conducted by divers. The problems inherent to the presence of divers have been discussed in several papers. Video techniques are increasingly used for observing underwater macrofauna and habitat. Most video techniques that do not need the presence of a diver use baited remote systems. In this paper, we present an original video technique which relies on a remote unbaited rotating remote system including a high definition camera. The system is set on the sea floor to record images. These are then analysed at the office to quantify biotic and abiotic sea bottom cover, and to identify and count fish species and other species like marine turtles. The technique was extensively tested in a highly diversified coral reef ecosystem in the South Lagoon of New Caledonia, based on a protocol covering both protected and unprotected areas in major lagoon habitats. The technique enabled to detect and identify a large number of species, and in particular fished species, which were not disturbed by the system. Habitat could easily be investigated through the images. A large number of observations could be carried out per day at sea. This study showed the strong potential of this non obtrusive technique for observing both macrofauna and habitat. It offers a unique spatial coverage and can be implemented at sea at a reasonable cost by non-expert staff. As such, this technique is particularly interesting for investigating and monitoring coastal biodiversity in the light of current conservation challenges and increasing monitoring needs.


Asunto(s)
Monitoreo del Ambiente/métodos , Tecnología de Sensores Remotos , Algoritmos , Animales , Biodiversidad , Conservación de los Recursos Naturales , Arrecifes de Coral , Ecosistema , Monitoreo del Ambiente/economía , Monitoreo del Ambiente/instrumentación , Peces , Geografía , Procesamiento de Imagen Asistido por Computador , Nueva Caledonia , Océanos y Mares , Programas Informáticos , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...