RESUMEN
Improving the kinetics and selectivity of CO2/CO electroreduction to valuable multi-carbon products is a challenge for science and is a requirement for practical relevance. Here we develop a thiol-modified surface ligand strategy that promotes electrochemical CO-to-acetate. We explore a picture wherein nucleophilic interaction between the lone pairs of sulfur and the empty orbitals of reaction intermediates contributes to making the acetate pathway more energetically accessible. Density functional theory calculations and Raman spectroscopy suggest a mechanism where the nucleophilic interaction increases the sp2 hybridization of CO(ad), facilitating the rate-determining step, CO* to (CHO)*. We find that the ligands stabilize the (HOOC-CH2)* intermediate, a key intermediate in the acetate pathway. In-situ Raman spectroscopy shows shifts in C-O, Cu-C, and C-S vibrational frequencies that agree with a picture of surface ligand-intermediate interactions. A Faradaic efficiency of 70% is obtained on optimized thiol-capped Cu catalysts, with onset potentials 100 mV lower than in the case of reference Cu catalysts.
RESUMEN
The alloying of two-dimensional (2D) transition metal dichalcogenides (TMDs) is an established route to produce robust semiconductors with continuously tunable optoelectronic properties. However, typically reported methods for fabricating alloyed 2D TMD nanosheets are not suitable for the inexpensive, scalable production of large-area (m2) devices. Herein we describe a general method to afford large quantities of compositionally-tunable 2D TMD nanosheets using commercially available powders and liquid-phase exfoliation. Beginning with Mo(1-x)WxS2 nanosheets, we demonstrate tunable optoelectronic properties as a function of composition. We extend this method to produce Mo0.5W0.5Se2 MoSSe, WSSe, and quaternary Mo0.5W0.5SSe nanosheets. High-resolution scanning transmission electron microscopy (STEM) imaging confirms the atomic arrangement of the nanosheets, while an array of spectroscopic techniques is used to characterize the chemical and optoelectronic properties. This transversal method represents an important step towards upscaling tailored TMD nanosheets with a broad range of tunable optoelectronic properties for large-area devices.
RESUMEN
We demonstrate the use of both pixelated differential phase contrast (DPC) scanning transmission electron microscopy (STEM) and off-axis electron holography (EH) for the measurement of electric fields and assess the advantages and limitations of each technique when applied to technologically relevant samples. Three different types of samples are examined, firstly a simple highly-doped Si pn junction. Then a SiGe superlattice is examined to evaluate the effects of the mean inner potential on the measured signal. Finally, an InGaN/GaN microwire light-emitting diode (LED) device is examined which has a polarization field, variations of mean inner potential and a wurtzite crystal lattice. We discuss aspects such as spatial resolution and sensitivity, and the concept of pseudo-field is defined. However, the most important point is the need to limit the influence of diffraction contrast to obtain accurate measurements. In this respect, the use of a plane electron wave for EH is clearly beneficial when compared to the use of a convergent beam for pixelated DPC STEM.
RESUMEN
Terahertz (THz) radiation will play a pivotal role in wireless communications, sensing, spectroscopy and imaging technologies in the decades to come. THz emitters and receivers should thus be simplified in their design and miniaturized to become a commodity. In this work we demonstrate scalable photoconductive THz receivers based on horizontally-grown InAs nanowires (NWs) embedded in a bow-tie antenna that work at room temperature. The NWs provide a short photoconductivity lifetime while conserving high electron mobility. The large surface-to-volume ratio also ensures low dark current and thus low thermal noise, compared to narrow-bandgap bulk devices. By engineering the NW morphology, the NWs exhibit greatly different photoconductivity lifetimes, enabling the receivers to detect THz photons via both direct and integrating sampling modes. The broadband NW receivers are compatible with gating lasers across the entire range of telecom wavelengths (1.2-1.6 µm) and thus are ideal for inexpensive all-optical fibre-based THz time-domain spectroscopy and imaging systems. The devices are deterministically positioned by lithography and thus scalable to the wafer scale, opening the path for a new generation of commercial THz receivers.
RESUMEN
Nature provides a wide range of self-assembled structures from the nanoscale to the macroscale. Under the right thermodynamic conditions and with the appropriate material supply, structures like stalactites, icicles, and corals can grow. However, the natural growth process is time-consuming. This work demonstrates a fast, nature-inspired method for growing stalactite nanopores using heterogeneous atomic deposition of hafnium dioxide at the orifice of templated silicon nitride apertures. The stalactite nanostructures combine the benefits of reduced sensing region typically for 2-dimensional material nanopores with the asymmetric geometry of capillaries, resulting in ionic selectivity, stability, and scalability. The proposed growing method provides an adaptable nanopore platform for basic and applied nanofluidic research, including biosensing, energy science, and filtration technologies.
Asunto(s)
Técnicas Biosensibles , Nanoporos , Fenómenos Físicos , Termodinámica , Iones , Técnicas Biosensibles/métodosRESUMEN
The development of hemoglobin (Hb)-based oxygen carriers (HBOCs) holds a lot of potential to overcome important drawbacks of donor blood such as a short shelf life or the potential risk of infection. However, a crucial limitation of current HBOCs is the autoxidation of Hb into methemoglobin (metHb), which lacks oxygen-carrying capacity. Herein, we address this challenge by fabricating a Hb and gold nanoclusters (AuNCs) composite (Hb@AuNCs) which preserves the exceptional features of both systems. Specifically, the Hb@AuNCs retain the oxygen-transporting properties of Hb, while the AuNCs provide antioxidant functionality as shown by their ability to catalytically deplete harmful reactive oxygen species (ROS). Importantly, these ROS-scavenging properties translate into antioxidant protection by minimizing the autoxidation of Hb into non-functional metHb. Furthermore, the AuNCs render Hb@AuNCs with auto-fluorescence properties which could potentially allow them to be monitored once administered into the body. Last but not least, these three features (i.e., oxygen transport, antioxidant and fluorescence properties) are well maintained following storage as a freeze-dried product. Thus, overall, the as-prepared Hb@AuNCs hold the potential to be used as a multifunctional blood surrogate in the near future.
RESUMEN
Generating pores in graphene by decoupled nucleation and expansion is desired to achieve a fine control over the porosity, and is desired to advance several applications. Herein, epoxidation is introduced, which is the formation of nanosized epoxy clusters on the graphitic lattice as nucleation sites without forming pores. In situ gasification of clusters inside a transmission electron microscope shows that pores are generated precisely at the site of the clusters by surpassing an energy barrier of 1.3 eV. Binding energy predictions using ab initio calculations combined with the cluster nucleation theory reveal the structure of the epoxy clusters and indicate that the critical cluster is an epoxy dimer. Finally, it is shown that the cluster gasification can be manipulated to form Å-scale pores which then effectively sieve gas molecules based on their size. This decoupled cluster nucleation and pore formation will likely pave the way for an independent control of pore size and density.
RESUMEN
The liquid-phase exfoliation of semiconducting transition metal dichalcogenide (TMD) powders into 2D nanosheets represents a promising route toward the scalable production of ultrathin high-performance optoelectronic devices. However, the harsh conditions required negatively affect the semiconducting properties, leading to poor device performance. Herein we demonstrate a gentle exfoliation method employing standard bulk MoS2 powder (pressed into pellets) together with the electrochemical intercalation of a quaternary alkyl ammonium. The resulting nanosheets are produced in high yield (32%) and consist primarily of mono-, bi-, triatomic layers with large lateral dimensions (>1 µm), while retaining the semiconducting polymorph. Exceptional optoelectronic performance of nanosheet thin-films is observed, such as enhanced photoluminescence, charge carrier mobility (up to 0.2 cm2 V-1 s-1 in a multisheet device), and photon-to-current efficiency while maintaining high transparency (>80%). Specifically, as a photoanode for iodide oxidation, an internal quantum efficiency up to 90% (at +0.3 V vs Pt) is achieved (compared to only 12% for MoS2 nanosheets produced via ultrasonication). Further using a combination of fluorescence microscopy and high-resolution scanning transmission electron microscopy (STEM), we show that our gently exfoliated nanosheets possess a defect density (2.33 × 1013 cm-2) comparable to monolayer MoS2 prepared by vacuum-based techniques and at least three times less than ultrasonicated MoS2 nanoflakes. Finally, we expand this method toward other TMDs (WS2, WSe2) to demonstrate its versatility toward high-performance and fully scalable van der Waals heterojunction devices.
RESUMEN
Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm-2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps.
RESUMEN
Iron electrocoagulation (EC) can be used for the decentralized treatment of arsenic(As)-contaminated groundwater. Iron EC involves the electrolytic dissolution of an Fe(0) electrode to Fe(II). This process produces reactive oxidants, which oxidize As(III) and Fe(II) to As(V) and a range of Fe(III) (oxyhydr)oxide phases. Here, we investigated the impact of manganese (Mn) on As removal, since the two often co-occur in groundwater. In the absence of Mn(II), we observed rapid As(III) oxidation and the formation of As(V)-Fe(III) polymers. Arsenic removal was achieved upon aggregation of the As(V)-Fe(III) polymers. In the presence of Mn, the mechanism of As removal varied with pH. At pH 4.5, As(III) was oxidized rapidly by OH⢠and the aggregation of the resulting As(V)-Fe(III) polymers was enhanced by the presence of Mn. At pH 8.5, As(III) and Mn(II) competed for Fe(IV), which led As(III) to persist in solution. The As(V) that did form was incorporated into a mixture of As(V)-Fe(III) polymers and a ferrihydrite-like phase that incorporated 8% Mn(III); some As(III) was also sorbed by these phases. At intermediate pH values, As(III) and Mn(II) also competed for the oxidants, but Mn(III) behaved as a reactive intermediate that reacted with Fe(II) or As(III). This result can explain the presence of As(V) in the solid phase. This detailed understanding of the As removal mechanisms in the presence of Mn can be used to tune the operating conditions of Fe EC for As removal under typical groundwater conditions.
Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Electrocoagulación , Compuestos Férricos , Manganeso , Oxidantes , Oxidación-ReducciónRESUMEN
The electric potential, electric field, and charge density of a monolayer of MoS2 have been quantitatively measured at atomic-scale resolution. This has been performed by off-axis electron holography using a double aberration-corrected transmission electron microscope operated at 80 kV and a low electron beam current density. Using this low dose rate and acceleration voltage, the specimen damage is limited during imaging. In order to improve the sensitivity of the measurement, a series of holograms have been acquired. Instabilities of the microscope such as the drifts of the specimen, biprism, and optical aberrations during the acquisition have been corrected by data processing. Phase images of the MoS2 monolayer have been acquired with a sensitivity of 2π/698 rad associated with a spatial resolution of 2.4 Å. The improvement in the signal-to-noise ratio allows the charge density to be directly calculated from the phase images using Poisson's equation. Density functional theory simulations of the potential and charge density of this MoS2 monolayer were performed for comparison to the experiment. The experimental measurements and simulations are consistent with each other, and notably, the charge density in a sulfur monovacancy (VS) site is shown.
RESUMEN
Correlation between off-axis electron holography and atom probe tomography (APT) provides morphological, chemical and electrical information about Mg doping (p-type) in gallium nitride (GaN) layers that have been grown at different temperatures at a nanometric scale. APT allows access to the three-dimensional distribution of atoms and their chemical nature. In particular, this technique allows visualisation of the Mg-rich clusters observed in p-doped GaN layers grown by metal-organic chemical vapour deposition. As the layer growth temperature increases, the cluster density decreases but their size indicted by the number of atoms increases. Moreover, APT reveals that threading dislocations are decorated with Mg atoms. Off-axis electron holography provides complementary information about the electrical activity of the Mg doping. As only a small fraction of dopant atoms are ionised at room temperature, this fraction is increased by annealing the specimen to 400 °C in situ in a transmission electron microscope (TEM). A strong reduction of the dopant electrical activity is observed for increases in the layer growth temperature. The correlation of APT with TEM-based techniques was shown to be a unique approach in order to investigate how the growth temperature affects both the chemical distribution and electrical activity of Mg dopant atoms.
RESUMEN
To provide a direct comparison, off-axis holography and differential phase contrast have been performed using the same microscope on the same specimens for the measurement of active dopants and piezoelectric fields. The sensitivity and spatial resolution of the two techniques have been assessed through the study of a simple silicon p-n junction observed at different bias voltages applied in-situ. For an evaluation of limitations and artefacts of the methods in more complicated systems a silicon pMOS device and an InGaN/GaN superlattice with 2.2-nm In0.15Ga0.85N quantum wells is investigated. We demonstrate the effects of dynamical scattering on the electric field measurements in the presence of local strain-induced sample tilts and its dependence on parameters like the convergence angle.
RESUMEN
In this paper we discuss developments for Lorentz mode or "medium resolution" off-axis electron holography such that it is now routinely possible obtain very high sensitivity phase maps with high spatial resolution whilst maintaining a large field of view. Modifications of the usual Fourier reconstruction procedure have been used to combine series of holograms for sensitivity improvement with a phase-shifting method for doubling the spatial resolution. In the frame of these developments, specific attention is given to the phase standard deviation description and its interaction with the spatial resolution as well as the processing of reference holograms. An experimental study based on Dark-Field Electron Holography (DFEH), using a SiGe/Si multilayer epitaxy sample is compared with theory. The method's efficiency of removing the autocorrelation term during hologram reconstruction is discussed. Software has been written in DigitalMicrograph that can be used to routinely perform these tasks. To illustrate the real improvements made using these methods we show that a strain measurement sensitivity of ⯱⯠0.025 % can be achieved with a spatial resolution of 2 nm and ⯱⯠0.13 % with a spatial resolution of 1 nm whilst maintaining a useful field of view of 300 nm. In the frame of these measurements a model of strain noise for DFEH has also been developed.
RESUMEN
Magnetotactic bacteria (MTB) are known to produce single-domain magnetite or greigite crystals within intracellular membrane organelles and to navigate along the Earth's magnetic field lines. MTB have been suggested as being one of the most ancient biomineralizing metabolisms on the Earth and they represent a fundamental model of intracellular biomineralization. Moreover, the determination of their specific crystallographic signature (e.g. structure and morphology) is essential for palaeoenvironmental and ancient-life studies. Yet, the mechanisms of MTB biomineralization remain poorly understood, although this process has been extensively studied in several cultured MTB strains in the Proteobacteria phylum. Here, we show a comprehensive transmission electron microscopy (TEM) study of magnetic and structural properties down to atomic scales on bullet-shaped magnetites produced by the uncultured strain MYR-1 belonging to the Nitrospirae phylum, a deeply branching phylogenetic MTB group. We observed a multiple-step crystal growth of MYR-1 magnetite: initial isotropic growth forming cubo-octahedral particles (less than approx. 40 nm), subsequent anisotropic growth and a systematic final elongation along [001] direction. During the crystal growth, one major {111} face is well developed and preserved at the larger basal end of the crystal. The basal {111} face appears to be terminated by a tetrahedral-octahedral-mixed iron surface, suggesting dimensional advantages for binding protein(s), which may template the crystallization of magnetite. This study offers new insights for understanding magnetite biomineralization within the Nitrospirae phylum.