Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(25): 45592-45598, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522962

RESUMEN

We present an integrated fiber optic spectrally resolved downwelling irradiance sensor for pushbroom hyperspectral imagers. The system comprises of a cosine corrector and custom fiber patch cables, collecting the ambient light in a large solid angle and feeding it directly to the entrance slit of the spectrometer. The system enables simultaneous measurement of downwelling and upwelling irradiance using the main hyperspectral camera sensor. As a demonstration, the spectral reflectance of a soil sample was measured with a RMSE of 8.4%, a significant improvement on the RMSE of 54% found without correction. At a weight of approximately 10 grams, this system provides a substantial weight saving over standalone incident light sensing instruments.

2.
Sci Rep ; 12(1): 14555, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008535

RESUMEN

Remote sensing using passive solar illumination in the Short-Wave Infrared spectrum is exposed to strong intensity variation in the spectral bands due to atmospheric changing conditions and spectral absorption. More robust spectral analysis methods, insensitive to these effects, are increasingly required to improve the accuracy of the data analysis in the field and extend the use of the system to "non ideal" illumination condition. A computational hyperspectral image analysis method (named HIAM) for deriving optimal reflectance indices for use in remote sensing of soil moisture content is detailed and demonstrated. Using histogram analysis of hyperspectral images of wet and dry soil, contrast ratios and wavelength pairings were tested to find a suitable spectral index to recover soil moisture content. Measurements of local soil samples under laboratory and field conditions have been used to demonstrate the robustness of the index to varying lighting conditions, while publicly available databases have been used to test across a selection of soil classes. In both cases, the moisture was recovered with RMS error better than 5%. As the method is independent of material type, this method has the potential to also be applied across a variety of biological and man-made samples.


Asunto(s)
Iluminación , Suelo , Clima , Humanos , Luz
3.
Methods Mol Biol ; 2494: 255-265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35467213

RESUMEN

With a rapidly increasing population, diminishing resource availability, and variation in environment, there is a need to change agricultural production to deliver long-term food security. To deliver such change, we need crops that are productive and tolerant to different stress factors. The traditional methods of obtaining data for phenotyping under field conditions, e.g., for morphological traits such as canopy structure or physiological traits such as plant stress-related traits, are laborious and time-consuming. A variety of imaging tools in the visible, spectral, and thermal infrared ranges allow data collection for quantitative studies of complex traits and crop monitoring. These tools can be used on crop phenotyping and monitoring platforms for high-throughput assessment of traits in order to better understand plant stress responses and the physiological pathways underlying yield. The applications and brief review of these imaging techniques are described and discussed in this chapter.


Asunto(s)
Agricultura , Productos Agrícolas , Agricultura/métodos , Productos Agrícolas/fisiología , Imagen Óptica , Fenotipo
4.
Opt Express ; 29(11): 16007-16018, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34154173

RESUMEN

We present FYMOS, an all-aluminum, robust, light weight, freeform based, near infrared hYperspectral imager for MOisture Sensing. FYMOS was designed and built to remotely measure moisture content using spectral features from 0.7-1.7µm integrating an InGaAs sensor. The imaging system, operating at F/2.8, is based on the three-concentric-mirror (Offner) spectrograph configuration providing a spectral resolution of 8 nm optimized for broad spectral coverage with sufficient resolution to make assessments of water levels. To optimize the optical performance, whilst minimizing weight and size, the design incorporates a bespoke freeform blazed grating machined on a commercial 5 axis ultra precision diamond machine. We achieve a 30% improvement on the RMS wavefront error in the spatial and spectral fields compared to a conventional Offner-Chrisp design with similar aperture and the monolithic Primary/Tertiary mirror eases the manufacturing assembly whilst minimizing weight. We demonstrate the performance of FYMOS by measuring the evaporation rate of water on a soil sample and results are processed with a physical multilayer radiative transfer model (MARMIT) to estimate the mean water thickness.

5.
Opt Express ; 20(12): 13252-61, 2012 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-22714353

RESUMEN

We report on a single plane illumination microscope (SPIM) incorporating adaptive optics in the imaging arm. We show how aberrations can occur from the sample mounting tube and quantify the aberrations both experimentally and computationally. A wavefront sensorless approach was taken to imaging a green fluorescent protein (GFP) labelled transgenic zebrafish. We show improvements in image quality whilst recording a 3D "z-stack" and show how the aberrations come from varying depths in the fish.


Asunto(s)
Imagenología Tridimensional/instrumentación , Luz , Microscopía/instrumentación , Óptica y Fotónica/instrumentación , Animales , Calibración , Proteínas Fluorescentes Verdes/metabolismo , Iluminación , Plásticos , Refractometría , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...