Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 293(6): 2102-2114, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29233890

RESUMEN

Extracellular phosphate (Pi) can act as a signaling molecule that directly alters gene expression and cellular physiology. The ability of cells or organisms to detect changes in extracellular Pi levels implies the existence of a Pi-sensing mechanism that signals to the body or individual cell. However, unlike in prokaryotes, yeasts, and plants, the molecular players involved in Pi sensing in mammals remain unknown. In this study, we investigated the involvement of the high-affinity, sodium-dependent Pi transporters PiT1 and PiT2 in mediating Pi signaling in skeletal cells. We found that deletion of PiT1 or PiT2 blunted the Pi-dependent ERK1/2-mediated phosphorylation and subsequent gene up-regulation of the mineralization inhibitors matrix Gla protein and osteopontin. This result suggested that both PiTs are necessary for Pi signaling. Moreover, the ERK1/2 phosphorylation could be rescued by overexpressing Pi transport-deficient PiT mutants. Using cross-linking and bioluminescence resonance energy transfer approaches, we found that PiT1 and PiT2 form high-abundance homodimers and Pi-regulated low-abundance heterodimers. Interestingly, in the absence of sodium-dependent Pi transport activity, the PiT1-PiT2 heterodimerization was still regulated by extracellular Pi levels. Of note, when two putative Pi-binding residues, Ser-128 (in PiT1) and Ser-113 (in PiT2), were substituted with alanine, the PiT1-PiT2 heterodimerization was no longer regulated by extracellular Pi These observations suggested that Pi binding rather than Pi uptake may be the key factor in mediating Pi signaling through the PiT proteins. Taken together, these results demonstrate that Pi-regulated PiT1-PiT2 heterodimerization mediates Pi sensing independently of Pi uptake.


Asunto(s)
Fosfatos/metabolismo , Multimerización de Proteína , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo , Animales , Transporte Biológico , Sistema de Señalización de MAP Quinasas , Mamíferos , Fosfatos/fisiología , Fosforilación , Unión Proteica , Transducción de Señal
2.
PLoS One ; 8(6): e65979, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23785462

RESUMEN

The formation of hydroxyapatite crystals and their insertion into collagen fibrils of the matrix are essential steps for bone mineralization. As phosphate is a main structural component of apatite crystals, its uptake by skeletal cells is critical and must be controlled by specialized membrane proteins. In mammals, in vitro studies have suggested that the high-affinity sodium-phosphate cotransporter PiT1 could play this role. In vivo, PiT1 expression was detected in hypertrophic chondrocytes of murine metatarsals, but its implication in bone physiology is not yet deciphered. As the complete deletion of PiT1 results in embryonic lethality at E12.5, we took advantage of a mouse model bearing two copies of PiT1 hypomorphic alleles to study the effect of a low expression of PiT1 on bone mineralization in vivo. In this report, we show that a 85% down-regulation of PiT1 in long bones resulted in a slight (6%) but significant reduction of femur length in young mice (15- and 30-day-old). However, despite a defect in alcian blue / alizarin red S and Von Kossa staining of hypomorphic 1-day-old mice, using X-rays micro-computed tomography, energy dispersive X-ray spectroscopy and histological staining techniques we could not detect differences between hypomorphic and wild-type mice of 15- to 300-days old. Interestingly, the expression of PiT2, the paralog of PiT1, was increased 2-fold in bone of PiT1 hypomorphic mice accounting for a normal phosphate uptake in mutant cells. Whether this may contribute to the absence of bone mineralization defects remains to be further deciphered.


Asunto(s)
Calcificación Fisiológica/genética , Regulación de la Expresión Génica , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Animales , Transporte Biológico , Tamaño Corporal/genética , Huesos/diagnóstico por imagen , Huesos/metabolismo , Huesos/patología , Calcificación Fisiológica/fisiología , Femenino , Genotipo , Masculino , Ratones , Ratones Transgénicos , Fenotipo , Radiografía , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo , Espectrometría por Rayos X
3.
Cell Mol Life Sci ; 68(2): 205-18, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20848155

RESUMEN

Although considerable advances in our understanding of the mechanisms of phosphate homeostasis and skeleton mineralization have recently been made, little is known about the initial events involving the detection of changes in the phosphate serum concentrations and the subsequent downstream regulation cascade. Recent data has strengthened a long-established hypothesis that a phosphate-sensing mechanism may be present in various organs. Such a phosphate sensor would detect changes in serum or local phosphate concentration and would inform the body, the local environment, or the individual cell. This suggests that phosphate in itself could represent a signal regulating multiple factors necessary for diverse biological processes such as bone or vascular calcification. This review summarizes findings supporting the possibility that phosphate represents a signaling molecule, particularly in bone and cartilage, but also in other tissues. The involvement of various signaling pathways (ERK1/2), transcription factors (Fra-1, Runx2) and phosphate transporters (PiT1, PiT2) is discussed.


Asunto(s)
Huesos/fisiología , Proteínas de Transporte de Fosfato , Fosfatos , Transducción de Señal , Animales , Huesos/química , Huesos/citología , Calcificación Fisiológica , Cartílago/metabolismo , Diferenciación Celular , Homeostasis/fisiología , Humanos , Mamíferos , Osteoblastos/citología , Osteoblastos/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/química , Fosfatos/fisiología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...