Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38931687

RESUMEN

Midlife risk factors such as type 2 diabetes mellitus (T2DM) confer a significantly increased risk of cognitive impairment in later life with executive function, memory, and attention domains often affected first. Spatiotemporal gait characteristics are emerging as important integrative biomarkers of neurocognitive function and of later dementia risk. We examined 24 spatiotemporal gait parameters across five domains of gait previously linked to cognitive function on usual-pace, maximal-pace, and cognitive dual-task gait conditions in 102 middle-aged adults with (57.5 ± 8.0 years; 40% female) and without (57.0 ± 8.3 years; 62.1% female) T2DM. Neurocognitive function was measured using a neuropsychological assessment battery. T2DM was associated with significant changes in gait phases and rhythm domains at usual pace, and greater gait variability observed during maximal pace and dual tasks. In the overall cohort, both the gait pace and rhythm domains were associated with memory and executive function during usual pace. At maximal pace, gait pace parameters were associated with reaction time and delayed memory. During the cognitive dual task, associations between gait variability and both delayed memory/executive function were observed. Associations persisted following covariate adjustment and did not differ by T2DM status. Principal components analysis identified a consistent association of slower gait pace (step/stride length) and increased gait variability during maximal-pace walking with poorer memory and executive function performance. These data support the use of spatiotemporal gait as an integrative biomarker of neurocognitive function in otherwise healthy middle-aged individuals and reveal discrete associations between both differing gait tasks and gait domains with domain-specific neuropsychological performance. Employing both maximal-pace and dual-task paradigms may be important in cognitively unimpaired populations with risk factors for later cognitive decline-with the aim of identifying individuals who may benefit from potential preventative interventions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Marcha , Pruebas Neuropsicológicas , Humanos , Femenino , Persona de Mediana Edad , Masculino , Marcha/fisiología , Diabetes Mellitus Tipo 2/psicología , Diabetes Mellitus Tipo 2/fisiopatología , Función Ejecutiva/fisiología , Cognición/fisiología , Memoria/fisiología , Anciano
2.
Immunol Cell Biol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862267

RESUMEN

Individuals with low socioeconomic status (SES) are at greater risk of contracting and developing severe disease compared with people with higher SES. Age, sex, host genetics, smoking and cytomegalovirus (CMV) serostatus are known to have a major impact on human immune responses and thus susceptibility to infection. However, the impact of SES on immune variability is not well understood or explored. Here, we used data from the Milieu Intérieur project, a study of 1000 healthy volunteers with extensive demographic and biological data, to examine the effect of SES on immune variability. We developed an Elo-rating system using socioeconomic features such as education, income and home ownership status to objectively rank SES in the 1000 donors. We observed sex-specific SES associations, such as females with a low SES having a significantly higher frequency of CMV seropositivity compared with females with high SES, and males with a low SES having a significantly higher frequency of active smoking compared with males with a high SES. Using random forest models, we identified specific immune genes which were significantly associated with SES in both baseline and immune challenge conditions. Interestingly, many of the SES associations were sex stimuli specific, highlighting the complexity of these interactions. Our study provides a new way of computing SES in human populations that can help identify novel SES associations and reinforces biological evidence for SES-dependent susceptibility to infection. This should serve as a basis for further understanding the molecular mechanisms behind SES effects on immune responses and ultimately disease.

3.
Clin Exp Immunol ; 215(2): 177-189, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-37917972

RESUMEN

Patients with decompensated liver cirrhosis, in particular those classified as Childs-Pugh class C, are at increased risk of severe coronavirus disease-2019 (COVID-19) upon infection with severe acute respiratory coronavirus 2 (SARS-CoV-2). The biological mechanisms underlying this are unknown. We aimed to examine the levels of serum intrinsic antiviral proteins as well as alterations in the innate antiviral immune response in patients with decompensated liver cirrhosis. Serum from 53 SARS-CoV-2 unexposed and unvaccinated individuals, with decompensated liver cirrhosis undergoing assessment for liver transplantation, were screened using SARS-CoV-2 pseudoparticle and SARS-CoV-2 virus assays. The ability of serum to inhibit interferon (IFN) signalling was assessed using a cell-based reporter assay. Severity of liver disease was assessed using two clinical scoring systems, the Child-Pugh class and the MELD-Na score. In the presence of serum from SARS-CoV-2 unexposed patients with decompensated liver cirrhosis there was no association between SARS-CoV-2 pseudoparticle infection or live SARS-CoV-2 virus infection and severity of liver disease. Type I IFNs are a key component of the innate antiviral response. Serum from patients with decompensated liver cirrhosis contained elevated levels of auto-antibodies capable of binding IFN-α2b compared to healthy controls. High MELD-Na scores were associated with the ability of these auto-antibodies to neutralize type I IFN signalling by IFN-α2b but not IFN-ß1a. Our results demonstrate that neutralizing auto-antibodies targeting IFN-α2b are increased in patients with high MELD-Na scores. The presence of neutralizing type I IFN-specific auto-antibodies may increase the likelihood of viral infections, including severe COVID-19, in patients with decompensated liver cirrhosis.


Asunto(s)
COVID-19 , Interferón Tipo I , Hepatopatías , Trasplante de Hígado , Humanos , Anticuerpos , Cirrosis Hepática
4.
BMJ Open ; 13(12): e077772, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38070888

RESUMEN

INTRODUCTION: Alzheimer's disease and other dementias affect >50 million individuals globally and are characterised by broad clinical and biological heterogeneity. Cohort and biobank studies have played a critical role in advancing the understanding of disease pathophysiology and in identifying novel diagnostic and treatment approaches. However, further discovery and validation cohorts are required to clarify the real-world utility of new biomarkers, facilitate research into the development of novel therapies and advance our understanding of the clinical heterogeneity and pathobiology of neurodegenerative diseases. METHODS AND ANALYSIS: The Tallaght University Hospital Institute for Memory and Cognition Biobank for Research in Ageing and Neurodegeneration (TIMC-BRAiN) will recruit 1000 individuals over 5 years. Participants, who are undergoing diagnostic workup in the TIMC Memory Assessment and Support Service (TIMC-MASS), will opt to donate clinical data and biological samples to a biobank. All participants will complete a detailed clinical, neuropsychological and dementia severity assessment (including Addenbrooke's Cognitive Assessment, Repeatable Battery for Assessment of Neuropsychological Status, Clinical Dementia Rating Scale). Participants undergoing venepuncture/lumbar puncture as part of the clinical workup will be offered the opportunity to donate additional blood (serum/plasma/whole blood) and cerebrospinal fluid samples for longitudinal storage in the TIMC-BRAiN biobank. Participants are followed at 18-month intervals for repeat clinical and cognitive assessments. Anonymised clinical data and biological samples will be stored securely in a central repository and used to facilitate future studies concerned with advancing the diagnosis and treatment of neurodegenerative diseases. ETHICS AND DISSEMINATION: Ethical approval has been granted by the St. James's Hospital/Tallaght University Hospital Joint Research Ethics Committee (Project ID: 2159), which operates in compliance with the European Communities (Clinical Trials on Medicinal Products for Human Use) Regulations 2004 and ICH Good Clinical Practice Guidelines. Findings using TIMC-BRAiN will be published in a timely and open-access fashion.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Humanos , Bancos de Muestras Biológicas , Enfermedad de Alzheimer/diagnóstico , Envejecimiento , Cognición , Enfermedades Neurodegenerativas/diagnóstico , Hospitales , Disfunción Cognitiva/diagnóstico
6.
Nature ; 620(7976): 1063-1070, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37587335

RESUMEN

High-grade serous ovarian cancers have low survival rates because of their late presentation with extensive peritoneal metastases and frequent chemoresistance1, and require new treatments guided by novel insights into pathogenesis. Here we describe the intrinsic tumour-suppressive activities of interferon-ε (IFNε). IFNε is constitutively expressed in epithelial cells of the fallopian tube, the cell of origin of high-grade serous ovarian cancers, and is then lost during development of these tumours. We characterize its anti-tumour activity in several preclinical models: ovarian cancer patient-derived xenografts, orthotopic and disseminated syngeneic models, and tumour cell lines with or without mutations in Trp53 and Brca genes. We use manipulation of the IFNε receptor IFNAR1 in different cell compartments, differential exposure status to IFNε and global measures of IFN signalling to show that the mechanism of the anti-tumour activity of IFNε involves direct action on tumour cells and, crucially, activation of anti-tumour immunity. IFNε activated anti-tumour T and natural killer cells and prevented the accumulation and activation of myeloid-derived suppressor cells and regulatory T cells. Thus, we demonstrate that IFNε is an intrinsic tumour suppressor in the female reproductive tract whose activities in models of established and advanced ovarian cancer, distinct from other type I IFNs, are compelling indications of potential new therapeutic approaches for ovarian cancer.


Asunto(s)
Interferón Tipo I , Neoplasias Ováricas , Proteínas Supresoras de Tumor , Animales , Femenino , Humanos , Línea Celular Tumoral , Células Epiteliales/metabolismo , Trompas Uterinas/metabolismo , Genes BRCA1 , Genes BRCA2 , Genes p53 , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Células Asesinas Naturales/inmunología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/metabolismo , Linfocitos T/inmunología , Linfocitos T Reguladores , Proteínas Supresoras de Tumor/inmunología , Proteínas Supresoras de Tumor/metabolismo
7.
Front Immunol ; 14: 1170012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063871

RESUMEN

Clinical outcomes from infection with SARS-CoV-2, the cause of the COVID-19 pandemic, are remarkably variable ranging from asymptomatic infection to severe pneumonia and death. One of the key drivers of this variability is differing trajectories in the immune response to SARS-CoV-2 infection. Many studies have noted markedly elevated cytokine levels in severe COVID-19, although results vary by cohort, cytokine studied and sensitivity of assay used. We assessed the immune response in acute COVID-19 by measuring 20 inflammatory markers in 118 unvaccinated patients with acute COVID-19 (median age: 70, IQR: 58-79 years; 48.3% female) recruited during the first year of the pandemic and 44 SARS-CoV-2 naïve healthy controls. Acute COVID-19 was associated with marked elevations in nearly all pro-inflammatory markers, whilst eleven markers (namely IL-1ß, IL-2, IL-6, IL-10, IL-18, IL-23, IL-33, TNF-α, IP-10, G-CSF and YKL-40) were associated with disease severity. We observed significant correlations between nearly all markers elevated in those infected with SARS-CoV-2 consistent with widespread immune dysregulation. Principal component analysis highlighted a pro-inflammatory cytokine signature (with strongest contributions from IL-1ß, IL-2, IL-6, IL-10, IL-33, G-CSF, TNF-α and IP-10) which was independently associated with severe COVID-19 (aOR: 1.40, 1.11-1.76, p=0.005), invasive mechanical ventilation (aOR: 1.61, 1.19-2.20, p=0.001) and mortality (aOR 1.57, 1.06-2.32, p = 0.02). Our findings demonstrate elevated cytokines and widespread immune dysregulation in severe COVID-19, adding further evidence for the role of a pro-inflammatory cytokine signature in severe and critical COVID-19.


Asunto(s)
COVID-19 , Humanos , Femenino , Anciano , Masculino , Citocinas , Interleucina-10 , Interleucina-33 , SARS-CoV-2 , Interleucina-6 , Factor de Necrosis Tumoral alfa , Pandemias , Quimiocina CXCL10 , Interleucina-2 , Factor Estimulante de Colonias de Granulocitos
8.
Nat Commun ; 13(1): 7254, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434007

RESUMEN

Host immunity to infection with SARS-CoV-2 is highly variable, dictating diverse clinical outcomes ranging from asymptomatic to severe disease and death. We previously reported reduced type I interferon in severe COVID-19 patients preceded clinical worsening. Further studies identified genetic mutations in loci of the TLR3- or TLR7-dependent interferon-I pathways, or neutralizing interferon-I autoantibodies as risk factors for development of COVID-19 pneumonia. Here we show in patient cohorts with different severities of COVID-19, that baseline plasma interferon α measures differ according to the immunoassay used, timing of sampling, the interferon α subtype measured, and the presence of autoantibodies. We also show a consistently reduced induction of interferon-I proteins in hospitalized COVID-19 patients upon immune stimulation, that is not associated with detectable neutralizing autoantibodies against interferon α or interferon ω. Intracellular proteomic analysis shows increased monocyte numbers in hospitalized COVID-19 patients but impaired interferon-I response after stimulation. We confirm this by ex vivo whole blood stimulation with interferon-I which induces transcriptomic responses associated with inflammation in hospitalized COVID-19 patients, that is not seen in controls or non-hospitalized moderate cases. These results may explain the dichotomy of the poor clinical response to interferon-I based treatments in late stage COVID-19, despite the importance of interferon-I in early acute infection and may guide alternative therapeutic strategies.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , Proteómica , SARS-CoV-2 , Interferón-alfa , Antivirales , Autoanticuerpos
9.
Cell Rep Med ; 3(11): 100804, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36334594

RESUMEN

Natural resistance to infection is an overlooked outcome after hepatitis C virus (HCV) exposure. Between 1977 and 1979, 1,200 Rhesus D-negative Irish women were exposed to HCV-contaminated anti-D immunoglobulin. Here, we investigate why some individuals appear to resist infection despite exposure (exposed seronegative [ESN]). We screen HCV-resistant and -susceptible donors for anti-HCV adaptive immune responses using ELISpots and VirScan to profile antibodies against all know human viruses. We perform standardized ex vivo whole blood stimulation (TruCulture) assays with antiviral ligands and assess antiviral responses using NanoString transcriptomics and Luminex proteomics. We describe an enhanced TLR3-type I interferon response in ESNs compared with seropositive women. We also identify increased inflammatory cytokine production in response to polyIC in ESNs compared with seropositive women. These enhanced responses may have contributed to innate immune protection against HCV infection in our cohort.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Femenino , Receptor Toll-Like 3/genética , Hepatitis C/tratamiento farmacológico , Antivirales
10.
Front Immunol ; 13: 1021351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311713

RESUMEN

Midlife Type 2 Diabetes Mellitus (T2DM) is associated with an increased risk of Alzheimer Disease (AD) in later life, with altered inflammatory responses postulated as key pathological drivers. Previous studies have demonstrated increased responsiveness to NLR family pyrin domain containing 3 (NLRP3) inflammasome agonists, both in individuals with untreated T2DM in addition to those with established AD. We hypothesised that peripheral NLRP3 inflammasome responses may be altered during the early stages of T2DM-related cognitive dysfunction. Here, we assessed the relationship between NLPR3 responses in peripheral blood mononuclear cells (including to Aß-42, the putative pathogenic protein in AD) and neuropsychological performance in uncomplicated midlife T2DM to identify early signatures of immune dysregulation which may predispose to later cognitive decline. We recruited a cross-sectional cohort of middle-aged adults with uncomplicated T2DM and matched Healthy Controls (HCs) for comprehensive neuropsychological assessment and in vitro PBMC responses to a range of NLRP3 agonists were assessed. T2DM was associated with subtle decrements on neuropsychological tests of delayed memory and executive function (both p<0.05). Overall, there were no differences between T2DM and HCs in immune responses induced by NLRP3 agonists. Further, we observed no relationship between the subtle neuropsychological decrements observed in T2DM and PBMC responsiveness to NLRP3 agonists. Our data suggests that peripheral NLRP3 inflammasome response dysregulation may not play a role in the early stages of cognitive dysfunction in midlife T2DM. Further longitudinal studies are warranted to examine the contribution of peripheral NLRP3 responses towards disease pathology and as cognitive decline accelerates in T2DM.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Adulto , Humanos , Persona de Mediana Edad , Enfermedad de Alzheimer/metabolismo , Estudios Transversales , Inflamasomas/metabolismo , Leucocitos Mononucleares/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
11.
Sensors (Basel) ; 22(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35957266

RESUMEN

Type 2 Diabetes Mellitus (T2DM) in midlife is associated with a greater risk of dementia in later life. Both gait speed and spatiotemporal gait characteristics have been associated with later cognitive decline in community-dwelling older adults. Thus, the assessment of gait characteristics in uncomplicated midlife T2DM may be important in selecting-out those with T2DM at greatest risk of later cognitive decline. We assessed the relationship between Inertial Motion Unit (IMUs)-derived gait characteristics and cognitive function assessed via Montreal Cognitive Assessment (MoCA)/detailed neuropsychological assessment battery (CANTAB) in middle-aged adults with and without uncomplicated T2DM using both multivariate linear regression and a neural network approach. Gait was assessed under (i) normal walking, (ii) fast (maximal) walking and (iii) cognitive dual-task walking (reciting alternate letters of the alphabet) conditions. Overall, 138 individuals were recruited (n = 94 with T2DM; 53% female, 52.8 ± 8.3 years; n = 44 healthy controls, 43% female, 51.9 ± 8.1 years). Midlife T2DM was associated with significantly slower gait velocity on both slow and fast walks (both p < 0.01) in addition to a longer stride time and greater gait complexity during normal walk (both p < 0.05). Findings persisted following covariate adjustment. In analyzing cognitive performance, the strongest association was observed between gait velocity and global cognitive function (MoCA). Significant associations were also observed between immediate/delayed memory performance and gait velocity. Analysis using a neural network approach did not outperform multivariate linear regression in predicting cognitive function (MoCA) from gait velocity. Our study demonstrates the impact of uncomplicated T2DM on gait speed and gait characteristics in midlife, in addition to the striking relationship between gait characteristics and global cognitive function/memory performance in midlife. Further studies are needed to evaluate the longitudinal relationship between midlife gait characteristics and later cognitive decline, which may aid in selecting-out those with T2DM at greatest-risk for preventative interventions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Anciano , Cognición , Femenino , Marcha , Humanos , Masculino , Persona de Mediana Edad , Caminata , Velocidad al Caminar
12.
J Am Med Dir Assoc ; 23(9): 1590-1602, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35922016

RESUMEN

Older adults in nursing homes are at greatest risk of morbidity and mortality from SARS-CoV-2 infection. Nursing home residents constituted one-third to more than half of all deaths during the early waves of the COVID-19 pandemic. Following this, widespread adaptation of infection prevention and control measures and the supply and use of personal protective equipment resulted in a significant decrease in nursing home infections and deaths. For nursing homes, the most important determinant of experiencing a SARS-CoV-2 outbreak in the first instance appears to be community-transmission levels (particularly with variants of concern), although nursing home size and quality, for-profit status, and sociodemographic characteristics are also important. Use of visitation bans, imposed to reduce the impact of COVID-19 on residents, must be delicately balanced against their impact on resident, friend or family, and staff well-being. The successful rollout of primary vaccination has resulted in a sharp decrease in morbidity and mortality from SARS-CoV-2 in nursing homes. However, emerging evidence suggests that vaccine efficacy may wane over time, and the use of a third or additional vaccine "booster" doses in nursing home residents restores protection afforded by primary vaccination. Ongoing monitoring of vaccine efficacy in terms of infection, morbidity, and mortality is crucial in this vulnerable group in informing ongoing SARS-CoV-2 vaccine boosting strategies. Here, we detail the impact of SARS-CoV-2 on nursing home residents and discuss important considerations in the management of nursing home SARS-CoV-2 outbreaks. We additionally examine the use of testing strategies, nonpharmacologic outbreak control measures and vaccination strategies in this cohort. Finally, the impact of SARS-CoV-2 on the sector is reflected on as we emphasize the need for adoption of universal standards of medical care and integration with wider public health infrastructure in nursing homes in order to provide a safe and effective long-term care sector.


Asunto(s)
COVID-19 , Anciano , Vacunas contra la COVID-19 , Humanos , Cuidados a Largo Plazo , Casas de Salud , Pandemias/prevención & control , SARS-CoV-2
13.
JCI Insight ; 7(18)2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-35862222

RESUMEN

Although published studies have demonstrated that IFN-ε has a crucial role in regulating protective immunity in the mouse female reproductive tract, expression and regulation of IFN-ε in the human female reproductive tract (hFRT) have not been characterized to our knowledge. We obtained hFRT samples from a well-characterized cohort of women to enable us to comprehensively assess ex vivo IFN-ε expression in the hFRT at various stages of the menstrual cycle. We found that among the various types of IFNs, IFN-ε was uniquely, selectively, and constitutively expressed in the hFRT epithelium. It had distinct expression patterns in the surface and glandular epithelia of the upper hFRT compared with basal layers of the stratified squamous epithelia of the lower hFRT. There was cyclical variation of IFN-ε expression in the endometrial epithelium of the upper hFRT and not in the distal FRT, consistent with selective endometrial expression of the progesterone receptor and regulation of the IFNE promoter by progesterone. Because we showed IFN-ε stimulated important protective IFN-regulated genes in FRT epithelium, this characterization is a key element in understanding the mechanisms of hormonal control of mucosal immunity.


Asunto(s)
Endometrio , Inmunidad Innata , Interferones , Animales , Endometrio/inmunología , Epitelio/inmunología , Femenino , Regulación de la Expresión Génica , Humanos , Inmunidad Innata/genética , Interferones/genética , Interferones/metabolismo , Ratones , Progesterona/metabolismo , Regiones Promotoras Genéticas , Receptores de Progesterona/metabolismo
14.
Viruses ; 14(7)2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35891471

RESUMEN

Serological assays capable of measuring antibody responses induced by previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been critical tools in the response to the COVID-19 pandemic. In this study, we use bead-based multiplex assays to measure IgG and IgA antibodies and IgG avidity to five SARS-CoV-2 antigens (Spike (S), receptor-binding domain (RBD), Nucleocapsid (N), S subunit 2, and Membrane-Envelope fusion (ME)). These assays were performed in several cohorts of healthcare workers and nursing home residents, who were followed for up to eleven months after SARS-CoV-2 infection or up to six months after vaccination. Our results show distinct kinetic patterns of antibody quantity (IgG and IgA) and avidity. While IgG and IgA antibody levels waned over time, with IgA antibody levels waning more rapidly, avidity increased with time after infection or vaccination. These contrasting kinetic patterns allow for the estimation of time since previous SARS-CoV-2 infection. Including avidity measurements in addition to antibody levels in a classification algorithm for estimating time since infection led to a substantial improvement in accuracy, from 62% to 78%. The inclusion of antibody avidity in panels of serological assays can yield valuable information for improving serosurveillance during SARS-CoV-2 epidemics.


Asunto(s)
Anticuerpos Antivirales , Afinidad de Anticuerpos , COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Humanos , Inmunoglobulina A , Inmunoglobulina G , Cinética , Pandemias , Glicoproteína de la Espiga del Coronavirus , Vacunación
15.
Genes Immun ; 23(2): 93-98, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35428875

RESUMEN

The Rhesus D antigen (RhD) has been associated with susceptibility to several viral infections. Reports suggest that RhD-negative individuals are better protected against infectious diseases and have overall better health. However, potential mechanisms contributing to these associations have not yet been defined. Here, we used transcriptomic and genomic data from the Milieu Interieur cohort of 1000 healthy individuals to explore the effect of Rhesus status on the immune response. We used the rs590787 SNP in the RHD gene to classify the 1000 donors as either RhD-positive or -negative. Whole blood was stimulated with LPS, polyIC, and the live influenza A virus and the NanoString human immunology panel of 560 genes used to assess donor immune response and to investigate sex-specific effects. Using regression analysis, we observed no significant differences in responses to polyIC or LPS between RhD-positive and -negative individuals. However, upon sex-specific analysis, we observed over 40 differentially expressed genes (DEGs) between RhD-positive (n = 384) and RhD-negative males (n = 75) after influenza virus stimulation. Interestingly these Rhesus-associated differences were not seen in females. Further investigation, using gene set enrichment analysis, revealed enhanced IFNγ signalling in RhD-negative males. This amplified IFNγ signalling axis may explain the increased viral resistance previously described in RhD-negative individuals.


Asunto(s)
Virus de la Influenza A , Femenino , Humanos , Inmunidad , Lipopolisacáridos , Masculino
16.
Heliyon ; 8(4): e09230, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35386227

RESUMEN

SARS-CoV-2 infection causes a wide spectrum of disease severity. Identifying the immunological characteristics of severe disease and the risk factors for their development are important in the management of COVID-19. This study aimed to identify and rank clinical and immunological features associated with progression to severe COVID-19 in order to investigate an immunological signature of severe disease. One hundred and eight patients with positive SARS-CoV-2 PCR were recruited. Routine clinical and laboratory markers were measured, as well as myeloid and lymphoid whole-blood immunophenotyping and measurement of the pro-inflammatory cytokines IL-6 and soluble CD25. All analysis was carried out in a routine hospital diagnostic laboratory. Univariate analysis demonstrated that severe disease was most strongly associated with elevated CRP and IL-6, loss of DLA-DR expression on monocytes and CD10 expression on neutrophils. Unbiased machine learning demonstrated that these four features were strongly associated with severe disease, with an average prediction score for severe disease of 0.925. These results demonstrate that these four markers could be used to identify patients developing severe COVID-19 and allow timely delivery of therapeutics.

17.
J Am Med Dir Assoc ; 23(3): 434-439, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35219507

RESUMEN

OBJECTIVES: Older nursing home residents make up the population at greatest risk of morbidity and mortality from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. No studies have examined the determinants of long-term antibody responses post vaccination in this group. DESIGN: Longitudinal cohort study. SETTING AND PARTICIPANTS: Residents from 5 nursing homes assessed before vaccination, and 5 weeks and 6 months post vaccination, with the BNT162b2 messenger RNA SARS-CoV-2 vaccine. METHODS: Comprehensive clinical assessment was performed, including assessment for comorbidity, frailty, and SARS-CoV-2 infection history. Serum nucleocapsid and anti-spike receptor binding domain (RBD) antibodies were analyzed at all timepoints. An in vitro angiotensin-converting enzyme (ACE2) receptor-spike RBD neutralization assay assessed serum neutralization capacity. RESULTS: Of 86 participants (81.1 ± 10.8 years; 65% female), just under half (45.4%; 39 of 86) had evidence of previous SARS-CoV-2 infection. All participants demonstrated a significant antibody response to vaccination at 5 weeks and a significant decline in this response by 6 months. SARS-CoV-2 infection history was the strongest predictor of antibody titer (log-transformed) at both 5 weeks [ß: 3.00; 95% confidence interval (CI): 2.32-3.70; P < .001] and 6 months (ß: 3.59; 95% CI: 2.89-4.28; P < .001). Independent of SARS-CoV-2 infection history, both age in years (ß: -0.05; 95% CI: -0.08 to -0.02; P < .001) and frailty (ß: -0.22; 95% CI: -0.33 to -0.11; P < .001) were associated with a significantly lower antibody titer at 6 months. Anti-spike antibody titers at both 5 weeks and 6 months significantly correlated with in vitro neutralization capacity. CONCLUSIONS AND IMPLICATIONS: In older nursing home residents, SARS-CoV-2 infection history was the strongest predictor of anti-spike antibody titers at 6 months, whereas age and frailty were independently associated with lower titers at 6 months. Antibody titers significantly correlated with in vitro neutralization capacity. Although older SARS-CoV-2 naïve nursing home residents may be particularly vulnerable to breakthrough SARS-CoV-2 infection, the relationship between antibody titers, SARS-CoV-2 infection, and clinical outcomes remains to be fully elucidated in this vulnerable population.


Asunto(s)
Factores de Edad , Anticuerpos Antivirales/sangre , Vacuna BNT162/inmunología , COVID-19 , Fragilidad , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , COVID-19/inmunología , COVID-19/prevención & control , Femenino , Anciano Frágil , Humanos , Estudios Longitudinales , Masculino , Casas de Salud , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología
18.
Front Immunol ; 12: 757249, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917078

RESUMEN

Type I interferons (IFN-I) and their cognate receptor, the IFNAR1/2 heterodimer, are critical components of the innate immune system in humans. They have been widely explored in the context of viral infection and autoimmune disease where they play key roles in protection against infection or shaping disease pathogenesis. A false dichotomy has emerged in the study of IFN-I where interferons are thought of as either beneficial or pathogenic. This 'good or bad' viewpoint excludes more nuanced interpretations of IFN-I biology - for example, it is known that IFN-I is associated with the development of systemic lupus erythematosus, yet is also protective in the context of infectious diseases and contributes to resistance to viral infection. Studies have suggested that a shared transcriptomic signature underpins both potential resistance to viral infection and susceptibility to autoimmune disease. This seems to be particularly evident in females, who exhibit increased viral resistance and increased susceptibility to autoimmune disease. The molecular mechanisms behind such a signature and the role of sex in its determination have yet to be precisely defined. From a genomic perspective, several single nucleotide polymorphisms (SNPs) in the IFN-I pathway have been associated with both infectious and autoimmune disease. While overlap between infection and autoimmunity has been described in the incidence of these SNPs, it has been overlooked in work and discussion to date. Here, we discuss the possible contributions of IFN-Is to the pathogenesis of infectious and autoimmune diseases. We comment on genetic associations between common SNPs in IFN-I or their signalling molecules that point towards roles in protection against viral infection and susceptibility to autoimmunity and propose that a shared transcriptomic and genomic immunological signature may underlie resistance to viral infection and susceptibility to autoimmunity in humans. We believe that defining shared transcriptomic and genomic immunological signatures underlying resistance to viral infection and autoimmunity in humans will reveal new therapeutic targets and improved vaccine strategies, particularly in females.


Asunto(s)
Enfermedades Autoinmunes/genética , Interferón Tipo I/inmunología , Transcriptoma , Virosis/genética , Enfermedades Autoinmunes/inmunología , Autoinmunidad/genética , Autoinmunidad/inmunología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Femenino , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Predisposición Genética a la Enfermedad/genética , Humanos , Interferón Tipo I/fisiología , Masculino , Polimorfismo de Nucleótido Simple , Receptor de Interferón alfa y beta/genética , Selección Genética , Caracteres Sexuales , TYK2 Quinasa/genética , Receptor Toll-Like 3/genética , Virosis/inmunología , Inactivación del Cromosoma X
19.
Nutrients ; 13(7)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34371940

RESUMEN

The emergence of persistent symptoms following SARS-CoV-2 infection, known as long COVID, is providing a new challenge to healthcare systems. The cardinal features are fatigue and reduced exercise tolerance. Vitamin D is known to have pleotropic effects far beyond bone health and is associated with immune modulation and autoimmunity. We hypothesize that vitamin D levels are associated with persistent symptoms following COVID-19. Herein, we investigate the relationship between vitamin D and fatigue and reduced exercise tolerance, assessed by the Chalder Fatigue Score, six-minute walk test and modified Borg scale. Multivariable linear and logistic regression models were used to evaluate the relationships. A total of 149 patients were recruited at a median of 79 days after COVID-19 illness. The median vitamin D level was 62 nmol/L, with n = 36 (24%) having levels 30-49 nmol/L and n = 14 (9%) with levels <30 nmol/L. Fatigue was common, with n = 86 (58%) meeting the case definition. The median Borg score was 3, while the median distance covered for the walk test was 450 m. No relationship between vitamin D and the measures of ongoing ill-health assessed in the study was found following multivariable regression analysis. These results suggest that persistent fatigue and reduced exercise tolerance following COVID-19 are independent of vitamin D.


Asunto(s)
COVID-19/complicaciones , Vitamina D/sangre , Factores de Edad , COVID-19/sangre , COVID-19/etiología , COVID-19/patología , Fatiga/sangre , Fatiga/etiología , Femenino , Humanos , Modelos Lineales , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis de Regresión , Factores de Riesgo , Factores Sexuales , Factores de Tiempo , Síndrome Post Agudo de COVID-19
20.
Front Immunol ; 12: 676932, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025675

RESUMEN

Objectives: The immunological and inflammatory changes following acute COVID-19 are hugely variable. Persistent clinical symptoms following resolution of initial infection, termed long COVID, are also hugely variable, but association with immunological changes has not been described. We investigate changing immunological parameters in convalescent COVID-19 and interrogate their potential relationships with persistent symptoms. Methods: We performed paired immunophenotyping at initial SARS-CoV-2 infection and convalescence (n=40, median 68 days) and validated findings in 71 further patients at median 101 days convalescence. Results were compared to 40 pre-pandemic controls. Fatigue and exercise tolerance were assessed as cardinal features of long COVID using the Chalder Fatigue Scale and 6-minute-walk test. The relationships between these clinical outcomes and convalescent immunological results were investigated. Results: We identify persistent expansion of intermediate monocytes, effector CD8+, activated CD4+ and CD8+ T cells, and reduced naïve CD4+ and CD8+ T cells at 68 days, with activated CD8+ T cells remaining increased at 101 days. Patients >60 years also demonstrate reduced naïve CD4+ and CD8+ T cells and expanded activated CD4+ T cells at 101 days. Ill-health, fatigue, and reduced exercise tolerance were common in this cohort. These symptoms were not associated with immune cell populations or circulating inflammatory cytokines. Conclusion: We demonstrate myeloid recovery but persistent T cell abnormalities in convalescent COVID-19 patients more than three months after initial infection. These changes are more marked with age and are independent of ongoing subjective ill-health, fatigue and reduced exercise tolerance.


Asunto(s)
Envejecimiento/fisiología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , SARS-CoV-2/fisiología , Adulto , Factores de Edad , Anciano , Estudios de Cohortes , Convalecencia , Femenino , Humanos , Inmunofenotipificación , Estudios Longitudinales , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Pandemias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...