Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biofabrication ; 16(4)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38986455

RESUMEN

Over the past three decades, cell therapy development has fallen short of expectations, with many cellular sources demonstrating a 'Janus effect' and raising safety concerns. Extracellular vesicles (EVs), supported by advanced technologies, present a promising avenue in regenerative medicine, offering benefits such as immune tolerance and avoidance of negative aspects associated with cell transplants. Our previous research showcased enhanced and organized subcutaneous vascularization using three-dimensional bioprinted patches containing HUVEC-derived EVs in immunodeficient animal models. In this context, stress conditions on the cells of origin further boosted the EVs' neoangiogenic potential. Since neovascularization is the first regenerative target requiring restoration, the present study aims to complement our previous work by employing an injectable gelatin methacrylate (GelMA) hydrogel functionalized with HUVEC-derived EVs in a pathological condition of acute myocardial infarction. This bioactive hydrogel resulted in reduced fibrosis, improved contractility, and promoted angiogenesis, showing promise in countering tissue deterioration and addressing vascular deficits. Moreover, the molecular characterization of EVs through miRNome and proteomic analyses further supports their potential as bio-additives for hydrogel functionalization. This cell-free approach mitigates immune rejection and oncogenic risks, offering innovative therapeutic advantages.


Asunto(s)
Vesículas Extracelulares , Células Endoteliales de la Vena Umbilical Humana , Hidrogeles , Infarto del Miocardio , Neovascularización Fisiológica , Humanos , Animales , Infarto del Miocardio/terapia , Infarto del Miocardio/patología , Hidrogeles/química , Neovascularización Fisiológica/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/trasplante , Metacrilatos/química , Gelatina/química , Inyecciones , Masculino
2.
Dis Model Mech ; 16(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37272428

RESUMEN

In human dystrophies, progressive muscle wasting is exacerbated by ectopic deposition of fat and fibrous tissue originating from fibro/adipogenic progenitors (FAPs). In degenerating muscles, the ability of these cells to promote successful healing is attenuated, and FAPs aberrantly expand and differentiate into adipocytes and fibroblasts. Thus, arresting the fibro/adipogenic fate of FAPs, without affecting their physiological role, represents a valuable therapeutic strategy for patients affected by muscle diseases. Here, using a panel of adipose progenitor cells, including human-derived FAPs, coupled with pharmacological perturbations and proteome profiling, we report that LY2090314 interferes with a genuine adipogenic program acting as WNT surrogate for the stabilization of a competent ß-catenin transcriptional complex. To predict the beneficial impact of LY2090314 in limiting ectopic deposition of fat in human muscles, we combined a poly-ethylene-glycol-fibrinogen biomimetic matrix with these progenitor cells to create a miniaturized 3D model of adipogenesis. Using this scalable system, we demonstrated that a two-digit nanomolar dose of this compound effectively represses adipogenesis at higher 3D scale, thus indicating the potential for LY2090314 to limit FAP-derived fat infiltrates in dystrophic muscles.


Asunto(s)
Adipogénesis , Distrofias Musculares , Humanos , Músculos , Células Madre , Músculo Esquelético , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...