Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107248, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38556082

RESUMEN

P2X receptors are a family of ligand gated ion channels found in a range of eukaryotic species including humans but are not naturally present in the yeast Saccharomyces cerevisiae. We demonstrate the first recombinant expression and functional gating of the P2X2 receptor in baker's yeast. We leverage the yeast host for facile genetic screens of mutant P2X2 by performing site saturation mutagenesis at residues of interest, including SNPs implicated in deafness and at residues involved in native binding. Deep mutational analysis and rounds of genetic engineering yield mutant P2X2 F303Y A304W, which has altered ligand selectivity toward the ATP analog AMP-PNP. The F303Y A304W variant shows over 100-fold increased intracellular calcium amplitudes with AMP-PNP compared to the WT receptor and has a much lower desensitization rate. Since AMP-PNP does not naturally activate P2X receptors, the F303Y A304W P2X2 may be a starting point for downstream applications in chemogenetic cellular control. Interestingly, the A304W mutation selectively destabilizes the desensitized state, which may provide a mechanistic basis for receptor opening with suboptimal agonists. The yeast system represents an inexpensive, scalable platform for ion channel characterization and engineering by circumventing the more expensive and time-consuming methodologies involving mammalian hosts.

2.
G3 (Bethesda) ; 14(3)2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38135291

RESUMEN

Studying the genetic and molecular characteristics of brewing yeast strains is crucial for understanding their domestication history and adaptations accumulated over time in fermentation environments, and for guiding optimizations to the brewing process itself. Saccharomyces cerevisiae (brewing yeast) is among the most profiled organisms on the planet, yet the temporal molecular changes that underlie industrial fermentation and beer brewing remain understudied. Here, we characterized the genomic makeup of a Saccharomyces cerevisiae ale yeast widely used in the production of Hefeweizen beers, and applied shotgun mass spectrometry to systematically measure the proteomic changes throughout 2 fermentation cycles which were separated by 14 rounds of serial repitching. The resulting brewing yeast proteomics resource includes 64,740 protein abundance measurements. We found that this strain possesses typical genetic characteristics of Saccharomyces cerevisiae ale strains and displayed progressive shifts in molecular processes during fermentation based on protein abundance changes. We observed protein abundance differences between early fermentation batches compared to those separated by 14 rounds of serial repitching. The observed abundance differences occurred mainly in proteins involved in the metabolism of ergosterol and isobutyraldehyde. Our systematic profiling serves as a starting point for deeper characterization of how the yeast proteome changes during commercial fermentations and additionally serves as a resource to guide fermentation protocols, strain handling, and engineering practices in commercial brewing and fermentation environments. Finally, we created a web interface (https://brewing-yeast-proteomics.ccbb.utexas.edu/) to serve as a valuable resource for yeast geneticists, brewers, and biochemists to provide insights into the global trends underlying commercial beer production.


Asunto(s)
Proteómica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cerveza/análisis
3.
Commun Biol ; 6(1): 1250, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082099

RESUMEN

The ongoing evolution of SARS-CoV-2 into more easily transmissible and infectious variants has provided unprecedented insight into mutations enabling immune escape. Understanding how these mutations affect the dynamics of antibody-antigen interactions is crucial to the development of broadly protective antibodies and vaccines. Here we report the characterization of a potent neutralizing antibody (N3-1) identified from a COVID-19 patient during the first disease wave. Cryogenic electron microscopy revealed a quaternary binding mode that enables direct interactions with all three receptor-binding domains of the spike protein trimer, resulting in extraordinary avidity and potent neutralization of all major variants of concern until the emergence of Omicron. Structure-based rational design of N3-1 mutants improved binding to all Omicron variants but only partially restored neutralization of the conformationally distinct Omicron BA.1. This study provides new insights into immune evasion through changes in spike protein dynamics and highlights considerations for future conformationally biased multivalent vaccine designs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes
4.
bioRxiv ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37790497

RESUMEN

Studying the genetic and molecular characteristics of brewing yeast strains is crucial for understanding their domestication history and adaptations accumulated over time in fermentation environments, and for guiding optimizations to the brewing process itself. Saccharomyces cerevisiae (brewing yeast) is amongst the most profiled organisms on the planet, yet the temporal molecular changes that underlie industrial fermentation and beer brewing remain understudied. Here, we characterized the genomic makeup of a Saccharomyces cerevisiae ale yeast widely used in the production of Hefeweizen beers, and applied shotgun mass spectrometry to systematically measure the proteomic changes throughout two fermentation cycles which were separated by 14 rounds of serial repitching. The resulting brewing yeast proteomics resource includes 64,740 protein abundance measurements. We found that this strain possesses typical genetic characteristics of Saccharomyces cerevisiae ale strains and displayed progressive shifts in molecular processes during fermentation based on protein abundance changes. We observed protein abundance differences between early fermentation batches compared to those separated by 14 rounds of serial repitching. The observed abundance differences occurred mainly in proteins involved in the metabolism of ergosterol and isobutyraldehyde. Our systematic profiling serves as a starting point for deeper characterization of how the yeast proteome changes during commercial fermentations and additionally serves as a resource to guide fermentation protocols, strain handling, and engineering practices in commercial brewing and fermentation environments. Finally, we created a web interface (https://brewing-yeast-proteomics.ccbb.utexas.edu/) to serve as a valuable resource for yeast geneticists, brewers, and biochemists to provide insights into the global trends underlying commercial beer production.

5.
Front Plant Sci ; 14: 1252564, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780492

RESUMEN

Hybrid vigor or heterosis has been widely applied in agriculture and extensively studied using genetic and gene expression approaches. However, the biochemical mechanism underlying heterosis remains elusive. One theory suggests that a decrease in protein aggregation may occur in hybrids due to the presence of protein variants between parental alleles, but it has not been experimentally tested. Here, we report comparative analysis of soluble and insoluble proteomes in Arabidopsis intraspecific and interspecific hybrids or allotetraploids formed between A. thaliana and A. arenosa. Both allotetraploids and intraspecific hybrids displayed nonadditive expression (unequal to the sum of the two parents) of the proteins, most of which were involved in biotic and abiotic stress responses. In the allotetraploids, homoeolog-expression bias was not observed among all proteins examined but accounted for 17-20% of the nonadditively expressed proteins, consistent with the transcriptome results. Among expression-biased homoeologs, there were more A. thaliana-biased than A. arenosa-biased homoeologs. Analysis of the insoluble and soluble proteomes revealed more soluble proteins in the hybrids than their parents but not in the allotetraploids. Most proteins in ribosomal biosynthesis and in the thylakoid lumen, membrane, and stroma were in the soluble fractions, indicating a role of protein stability in photosynthetic activities for promoting growth. Thus, nonadditive expression of stress-responsive proteins and increased solubility of photosynthetic proteins may contribute to heterosis in Arabidopsis hybrids and allotetraploids and possibly hybrid crops.

6.
Cancer Cell ; 41(10): 1774-1787.e9, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37774699

RESUMEN

Chromosomal region 9p21 containing tumor suppressors CDKN2A/B and methylthioadenosine phosphorylase (MTAP) is one of the most frequent genetic deletions in cancer. 9p21 loss is correlated with reduced tumor-infiltrating lymphocytes (TILs) and resistance to immune checkpoint inhibitor (ICI) therapy. Previously thought to be caused by CDKN2A/B loss, we now show that it is loss of MTAP that leads to poor outcomes on ICI therapy and reduced TIL density. MTAP loss causes accumulation of methylthioadenosine (MTA) both intracellularly and extracellularly and profoundly impairs T cell function via the inhibition of protein arginine methyltransferase 5 (PRMT5) and by adenosine receptor agonism. Administration of MTA-depleting enzymes reverses this immunosuppressive effect, increasing TILs and drastically impairing tumor growth and importantly, synergizes well with ICI therapy. As several studies have shown ICI resistance in 9p21/MTAP null/low patients, we propose that MTA degrading therapeutics may have substantial therapeutic benefit in these patients by enhancing ICI effectiveness.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Linfocitos T/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Purina-Nucleósido Fosforilasa/genética , Inmunoterapia , Proteína-Arginina N-Metiltransferasas/genética
7.
Cell Rep Methods ; 3(5): 100464, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37323580

RESUMEN

A major challenge to rationally building multi-gene processes in yeast arises due to the combinatorics of combining all of the individual edits into the same strain. Here, we present a precise and multi-site genome editing approach that combines all edits without selection markers using CRISPR-Cas9. We demonstrate a highly efficient gene drive that selectively eliminates specific loci by integrating CRISPR-Cas9-mediated double-strand break (DSB) generation and homology-directed recombination with yeast sexual assortment. The method enables marker-less enrichment and recombination of genetically engineered loci (MERGE). We show that MERGE converts single heterologous loci to homozygous loci at ∼100% efficiency, independent of chromosomal location. Furthermore, MERGE is equally efficient at converting and combining multiple loci, thus identifying compatible genotypes. Finally, we establish MERGE proficiency by engineering a fungal carotenoid biosynthesis pathway and most of the human α-proteasome core into yeast. Therefore, MERGE lays the foundation for scalable, combinatorial genome editing in yeast.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Humanos , Sistemas CRISPR-Cas/genética , Saccharomyces cerevisiae/genética , Edición Génica , Ingeniería Genética , Recombinación Homóloga
8.
Cell Host Microbe ; 30(9): 1242-1254.e6, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35988543

RESUMEN

The worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the repeated emergence of variants of concern. For the Omicron variant, sub-lineages BA.1 and BA.2, respectively, contain 33 and 29 nonsynonymous and indel spike protein mutations. These amino acid substitutions and indels are implicated in increased transmissibility and enhanced immune evasion. By reverting individual spike mutations of BA.1 or BA.2, we characterize the molecular effects of the Omicron spike mutations on expression, ACE2 receptor affinity, and neutralizing antibody recognition. We identified key mutations enabling escape from neutralizing antibodies at a variety of epitopes. Stabilizing mutations in the N-terminal and S2 domains of the spike protein can compensate for destabilizing mutations in the receptor binding domain, enabling the record number of mutations in Omicron. Our results provide a comprehensive account of the mutational effects in the Omicron spike protein and illustrate previously uncharacterized mechanisms of host evasion.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales , Epítopos , Humanos , Glicoproteínas de Membrana , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral
9.
Nat Commun ; 13(1): 2882, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610225

RESUMEN

The yeast Saccharomyces cerevisiae is powerful for studying human G protein-coupled receptors as they can be coupled to its mating pathway. However, some receptors, including the mu opioid receptor, are non-functional, which may be due to the presence of the fungal sterol ergosterol instead of cholesterol. Here we engineer yeast to produce cholesterol and introduce diverse mu, delta, and kappa opioid receptors to create sensitive opioid biosensors that recapitulate agonist binding profiles and antagonist inhibition. Additionally, human mu opioid receptor variants, including those with clinical relevance, largely display expected phenotypes. By testing mu opioid receptor-based biosensors with systematically adjusted cholesterol biosynthetic intermediates, we relate sterol profiles to biosensor sensitivity. Finally, we apply sterol-modified backgrounds to other human receptors revealing sterol influence in SSTR5, 5-HTR4, FPR1, and NPY1R signaling. This work provides a platform for generating human G protein-coupled receptor-based biosensors, facilitating receptor deorphanization and high-throughput screening of receptors and effectors.


Asunto(s)
Fitosteroles , Saccharomyces cerevisiae , Colesterol/metabolismo , Humanos , Fitosteroles/metabolismo , Receptores Opioides/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/genética , Receptores Opioides mu/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esteroles/metabolismo
10.
Mol Cell ; 81(24): 5099-5111.e8, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34919820

RESUMEN

The SARS-CoV-2 spike protein is a critical component of vaccines and a target for neutralizing monoclonal antibodies (nAbs). Spike is also undergoing immunogenic selection with variants that increase infectivity and partially escape convalescent plasma. Here, we describe Spike Display, a high-throughput platform to rapidly characterize glycosylated spike ectodomains across multiple coronavirus-family proteins. We assayed ∼200 variant SARS-CoV-2 spikes for their expression, ACE2 binding, and recognition by 13 nAbs. An alanine scan of all five N-terminal domain (NTD) loops highlights a public epitope in the N1, N3, and N5 loops recognized by most NTD-binding nAbs. NTD mutations in variants of concern B.1.1.7 (alpha), B.1.351 (beta), B.1.1.28 (gamma), B.1.427/B.1.429 (epsilon), and B.1.617.2 (delta) impact spike expression and escape most NTD-targeting nAbs. Finally, B.1.351 and B.1.1.28 completely escape a potent ACE2 mimic. We anticipate that Spike Display will accelerate antigen design, deep scanning mutagenesis, and antibody epitope mapping for SARS-CoV-2 and other emerging viral threats.


Asunto(s)
Mamíferos/virología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/virología , Línea Celular , Epítopos/genética , Epítopos/inmunología , Células HEK293 , Humanos , Mamíferos/inmunología , Unión Proteica/genética , Unión Proteica/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
11.
J Clin Invest ; 131(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34196304

RESUMEN

Seasonal influenza vaccination elicits a diminished adaptive immune response in the elderly, and the mechanisms of immunosenescence are not fully understood. Using Ig-Seq, we found a marked increase with age in the prevalence of cross-reactive (CR) serum antibodies that recognize both the H1N1 (vaccine-H1) and H3N2 (vaccine-H3) components of an egg-produced split influenza vaccine. CR antibodies accounted for 73% ± 18% of the serum vaccine responses in a cohort of elderly donors, 65% ± 15% in late middle-aged donors, and only 13% ± 5% in persons under 35 years of age. The antibody response to non-HA antigens was boosted by vaccination. Recombinant expression of 19 vaccine-H1+H3 CR serum monoclonal antibodies (s-mAbs) revealed that they predominantly bound to non-HA influenza proteins. A sizable fraction of vaccine-H1+H3 CR s-mAbs recognized with high affinity the sulfated glycans, in particular sulfated type 2 N-acetyllactosamine (Galß1-4GalNAcß), which is found on egg-produced proteins and thus unlikely to contribute to protection against influenza infection in humans. Antibodies against sulfated glycans in egg-produced vaccine had been identified in animals but were not previously characterized in humans. Collectively, our results provide a quantitative basis for how repeated exposure to split influenza vaccine correlates with unintended focusing of serum antibody responses to non-HA antigens that may result in suboptimal immunity against influenza.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Proteínas Virales/inmunología , Adulto , Factores de Edad , Anciano , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/sangre , Estudios de Cohortes , Reacciones Cruzadas , Huevos/análisis , Humanos , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Persona de Mediana Edad , Polisacáridos/inmunología , Vacunación
12.
Science ; 372(6546): 1108-1112, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947773

RESUMEN

The molecular composition and binding epitopes of the immunoglobulin G (IgG) antibodies that circulate in blood plasma after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are unknown. Proteomic deconvolution of the IgG repertoire to the spike glycoprotein in convalescent subjects revealed that the response is directed predominantly (>80%) against epitopes residing outside the receptor binding domain (RBD). In one subject, just four IgG lineages accounted for 93.5% of the response, including an amino (N)-terminal domain (NTD)-directed antibody that was protective against lethal viral challenge. Genetic, structural, and functional characterization of a multidonor class of "public" antibodies revealed an NTD epitope that is recurrently mutated among emerging SARS-CoV-2 variants of concern. These data show that "public" NTD-directed and other non-RBD plasma antibodies are prevalent and have implications for SARS-CoV-2 protection and antibody escape.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/química , Afinidad de Anticuerpos , COVID-19/prevención & control , Epítopos/inmunología , Humanos , Evasión Inmune , Inmunoglobulina G/sangre , Inmunoglobulina G/química , Cadenas Pesadas de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/inmunología , Ratones , Ratones Endogámicos BALB C , Mutación , Dominios Proteicos , Proteómica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
13.
bioRxiv ; 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33851158

RESUMEN

The ongoing evolution of SARS-CoV-2 into more easily transmissible and infectious variants has sparked concern over the continued effectiveness of existing therapeutic antibodies and vaccines. Hence, together with increased genomic surveillance, methods to rapidly develop and assess effective interventions are critically needed. Here we report the discovery of SARS-CoV-2 neutralizing antibodies isolated from COVID-19 patients using a high-throughput platform. Antibodies were identified from unpaired donor B-cell and serum repertoires using yeast surface display, proteomics, and public light chain screening. Cryo-EM and functional characterization of the antibodies identified N3-1, an antibody that binds avidly (Kd,app = 68 pM) to the receptor binding domain (RBD) of the spike protein and robustly neutralizes the virus in vitro. This antibody likely binds all three RBDs of the trimeric spike protein with a single IgG. Importantly, N3-1 equivalently binds spike proteins from emerging SARS-CoV-2 variants of concern, neutralizes UK variant B.1.1.7, and binds SARS-CoV spike with nanomolar affinity. Taken together, the strategies described herein will prove broadly applicable in interrogating adaptive immunity and developing rapid response biological countermeasures to emerging pathogens.

14.
mBio ; 11(6)2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127862

RESUMEN

We sequenced the genomes of 5,085 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains causing two coronavirus disease 2019 (COVID-19) disease waves in metropolitan Houston, TX, an ethnically diverse region with 7 million residents. The genomes were from viruses recovered in the earliest recognized phase of the pandemic in Houston and from viruses recovered in an ongoing massive second wave of infections. The virus was originally introduced into Houston many times independently. Virtually all strains in the second wave have a Gly614 amino acid replacement in the spike protein, a polymorphism that has been linked to increased transmission and infectivity. Patients infected with the Gly614 variant strains had significantly higher virus loads in the nasopharynx on initial diagnosis. We found little evidence of a significant relationship between virus genotype and altered virulence, stressing the linkage between disease severity, underlying medical conditions, and host genetics. Some regions of the spike protein-the primary target of global vaccine efforts-are replete with amino acid replacements, perhaps indicating the action of selection. We exploited the genomic data to generate defined single amino acid replacements in the receptor binding domain of spike protein that, importantly, produced decreased recognition by the neutralizing monoclonal antibody CR3022. Our report represents the first analysis of the molecular architecture of SARS-CoV-2 in two infection waves in a major metropolitan region. The findings will help us to understand the origin, composition, and trajectory of future infection waves and the potential effect of the host immune response and therapeutic maneuvers on SARS-CoV-2 evolution.IMPORTANCE There is concern about second and subsequent waves of COVID-19 caused by the SARS-CoV-2 coronavirus occurring in communities globally that had an initial disease wave. Metropolitan Houston, TX, with a population of 7 million, is experiencing a massive second disease wave that began in late May 2020. To understand SARS-CoV-2 molecular population genomic architecture and evolution and the relationship between virus genotypes and patient features, we sequenced the genomes of 5,085 SARS-CoV-2 strains from these two waves. Our report provides the first molecular characterization of SARS-CoV-2 strains causing two distinct COVID-19 disease waves.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Anticuerpos Neutralizantes/inmunología , Secuencia de Bases , Betacoronavirus/inmunología , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , ARN Polimerasa Dependiente de ARN de Coronavirus , Genoma Viral , Genotipo , Humanos , Aprendizaje Automático , Modelos Moleculares , Técnicas de Diagnóstico Molecular , Pandemias , Filogenia , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2 , Análisis de Secuencia de Proteína , Glicoproteína de la Espiga del Coronavirus/inmunología , Texas/epidemiología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
15.
medRxiv ; 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33024977

RESUMEN

We sequenced the genomes of 5,085 SARS-CoV-2 strains causing two COVID-19 disease waves in metropolitan Houston, Texas, an ethnically diverse region with seven million residents. The genomes were from viruses recovered in the earliest recognized phase of the pandemic in Houston, and an ongoing massive second wave of infections. The virus was originally introduced into Houston many times independently. Virtually all strains in the second wave have a Gly614 amino acid replacement in the spike protein, a polymorphism that has been linked to increased transmission and infectivity. Patients infected with the Gly614 variant strains had significantly higher virus loads in the nasopharynx on initial diagnosis. We found little evidence of a significant relationship between virus genotypes and altered virulence, stressing the linkage between disease severity, underlying medical conditions, and host genetics. Some regions of the spike protein - the primary target of global vaccine efforts - are replete with amino acid replacements, perhaps indicating the action of selection. We exploited the genomic data to generate defined single amino acid replacements in the receptor binding domain of spike protein that, importantly, produced decreased recognition by the neutralizing monoclonal antibody CR30022. Our study is the first analysis of the molecular architecture of SARS-CoV-2 in two infection waves in a major metropolitan region. The findings will help us to understand the origin, composition, and trajectory of future infection waves, and the potential effect of the host immune response and therapeutic maneuvers on SARS-CoV-2 evolution.

16.
bioRxiv ; 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33398269

RESUMEN

Although humoral immunity is essential for control of SARS-CoV-2, the molecular composition, binding epitopes and effector functions of the immunoglobulin G (IgG) antibodies that circulate in blood plasma following infection are unknown. Proteomic deconvolution of the circulating IgG repertoire (Ig-Seq 1 ) to the spike ectodomain (S-ECD 2 ) in four convalescent study subjects revealed that the plasma response is oligoclonal and directed predominantly (>80%) to S-ECD epitopes that lie outside the receptor binding domain (RBD). When comparing antibodies directed to either the RBD, the N-terminal domain (NTD) or the S2 subunit (S2) in one subject, just four IgG lineages (1 anti-S2, 2 anti-NTD and 1 anti-RBD) accounted for 93.5% of the repertoire. Although the anti-RBD and one of the anti-NTD antibodies were equally potently neutralizing in vitro , we nonetheless found that the anti-NTD antibody was sufficient for protection to lethal viral challenge, either alone or in combination as a cocktail where it dominated the effect of the other plasma antibodies. We identified in vivo protective plasma anti-NTD antibodies in 3/4 subjects analyzed and discovered a shared class of antibodies targeting the NTD that utilize unmutated or near-germline IGHV1-24, the most electronegative IGHV gene in the human genome. Structural analysis revealed that binding to NTD is dominated by interactions with the heavy chain, accounting for 89% of the entire interfacial area, with germline residues uniquely encoded by IGHV1-24 contributing 20% (149 Å 2 ). Together with recent reports of germline IGHV1-24 antibodies isolated by B-cell cloning 3,4 our data reveal a class of shared IgG antibodies that are readily observed in convalescent plasma and underscore the role of NTD-directed antibodies in protection against SARS-CoV-2 infection.

17.
Genes Dev ; 33(23-24): 1751-1774, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31753913

RESUMEN

Bromodomain proteins (BRD) are key chromatin regulators of genome function and stability as well as therapeutic targets in cancer. Here, we systematically delineate the contribution of human BRD proteins for genome stability and DNA double-strand break (DSB) repair using several cell-based assays and proteomic interaction network analysis. Applying these approaches, we identify 24 of the 42 BRD proteins as promoters of DNA repair and/or genome integrity. We identified a BRD-reader function of PCAF that bound TIP60-mediated histone acetylations at DSBs to recruit a DUB complex to deubiquitylate histone H2BK120, to allowing direct acetylation by PCAF, and repair of DSBs by homologous recombination. We also discovered the bromo-and-extra-terminal (BET) BRD proteins, BRD2 and BRD4, as negative regulators of transcription-associated RNA-DNA hybrids (R-loops) as inhibition of BRD2 or BRD4 increased R-loop formation, which generated DSBs. These breaks were reliant on topoisomerase II, and BRD2 directly bound and activated topoisomerase I, a known restrainer of R-loops. Thus, comprehensive interactome and functional profiling of BRD proteins revealed new homologous recombination and genome stability pathways, providing a framework to understand genome maintenance by BRD proteins and the effects of their pharmacological inhibition.


Asunto(s)
Inestabilidad Genómica , Estructuras R-Loop , Reparación del ADN por Recombinación/genética , Factores de Transcripción/genética , Acetilación , Línea Celular , Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Células HEK293 , Células HeLa , Humanos , Transactivadores/metabolismo , Factores de Transcripción/análisis , Ubiquitinación , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
18.
Immunity ; 50(6): 1530-1541.e8, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216462

RESUMEN

Rapidly evolving RNA viruses, such as the GII.4 strain of human norovirus (HuNoV), and their vaccines elicit complex serological responses associated with previous exposure. Specific correlates of protection, moreover, remain poorly understood. Here, we report the GII.4-serological antibody repertoire-pre- and post-vaccination-and select several antibody clonotypes for epitope and structural analysis. The humoral response was dominated by GII.4-specific antibodies that blocked ancestral strains or by antibodies that bound to divergent genotypes and did not block viral-entry-ligand interactions. However, one antibody, A1431, showed broad blockade toward tested GII.4 strains and neutralized the pandemic GII.P16-GII.4 Sydney strain. Structural mapping revealed conserved epitopes, which were occluded on the virion or partially exposed, allowing for broad blockade with neutralizing activity. Overall, our results provide high-resolution molecular information on humoral immune responses after HuNoV vaccination and demonstrate that infection-derived and vaccine-elicited antibodies can exhibit broad blockade and neutralization against this prevalent human pathogen.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/prevención & control , Norovirus/inmunología , Vacunas Virales/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/química , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Línea Celular , Secuencia Conservada , Epítopos/química , Epítopos/inmunología , Humanos , Inmunoglobulina G/inmunología , Modelos Moleculares , Norovirus/clasificación , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/inmunología , Vacunación
19.
Cell Host Microbe ; 25(3): 367-376.e5, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30795981

RESUMEN

Humans are repeatedly exposed to influenza virus via infections and vaccinations. Understanding how multiple exposures and pre-existing immunity impact antibody responses is essential for vaccine development. Given the recent prevalence of influenza H1N1 A/California/7/2009 (CA09), we examined the clonal composition and dynamics of CA09 hemagglutinin (HA)-reactive IgG repertoire over 5 years in a donor with multiple influenza exposures. The anti-CA09 HA polyclonal response in this donor comprised 24 persistent antibody clonotypes, accounting for 72.6% ± 10.0% of the anti-CA09 HA repertoire over 5 years. These persistent antibodies displayed higher somatic hypermutation relative to transient serum antibodies detected at one time point. Additionally, persistent antibodies predominantly demonstrated cross-reactivity and potent neutralization toward a phylogenetically distant H5N1 A/Vietnam/1203/2004 (VT04) strain, a feature correlated with HA stem recognition. This analysis reveals how "serological imprinting" impacts responses to influenza and suggests that once elicited, cross-reactive antibodies targeting the HA stem can persist for years.


Asunto(s)
Anticuerpos Antivirales/sangre , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Humoral , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Orthomyxoviridae/inmunología , Femenino , Humanos , Inmunoglobulina G/sangre , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Persona de Mediana Edad , Suero/inmunología , Suiza
20.
Virus Evol ; 5(2): vez055, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31908847

RESUMEN

Many viral genomes are small, containing only single- or double-digit numbers of genes and relatively few regulatory elements. Yet viruses successfully execute complex regulatory programs as they take over their host cells. Here, we propose that some viruses regulate gene expression via a carefully balanced interplay between transcription, translation, and transcript degradation. As our model system, we employ bacteriophage T7, whose genome of approximately sixty genes is well annotated and for which there is a long history of computational models of gene regulation. We expand upon prior modeling work by implementing a stochastic gene expression simulator that tracks individual transcripts, polymerases, ribosomes, and ribonucleases participating in the transcription, translation, and transcript-degradation processes occurring during a T7 infection. By combining this detailed mechanistic modeling of a phage infection with high-throughput gene expression measurements of several strains of bacteriophage T7, evolved and engineered, we can show that both the dynamic interplay between transcription and transcript degradation, and between these two processes and translation, appear to be critical components of T7 gene regulation. Our results point to targeted degradation as a generic gene regulation strategy that may have evolved in many other viruses. Further, our results suggest that detailed mechanistic modeling may uncover the biological mechanisms at work in both evolved and engineered virus variants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA