Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38920469

RESUMEN

The question of what generates conscious experience has mesmerized thinkers since the dawn of humanity, yet its origins remain a mystery. The topic of consciousness has gained traction in recent years, thanks to the development of large language models that now arguably pass the Turing test, an operational test for intelligence. However, intelligence and consciousness are not related in obvious ways, as anyone who suffers from a bad toothache can attest-pain generates intense feelings and absorbs all our conscious awareness, yet nothing particularly intelligent is going on. In the hard sciences, this topic is frequently met with skepticism because, to date, no protocol to measure the content or intensity of conscious experiences in an observer-independent manner has been agreed upon. Here, we present a novel proposal: Conscious experience arises whenever a quantum mechanical superposition forms. Our proposal has several implications: First, it suggests that the structure of the superposition determines the qualia of the experience. Second, quantum entanglement naturally solves the binding problem, ensuring the unity of phenomenal experience. Finally, a moment of agency may coincide with the formation of a superposition state. We outline a research program to experimentally test our conjecture via a sequence of quantum biology experiments. Applying these ideas opens up the possibility of expanding human conscious experience through brain-quantum computer interfaces.

2.
Nat Commun ; 14(1): 3573, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328483

RESUMEN

Quantum key distribution with solid-state single-photon emitters is gaining traction due to their rapidly improving performance and compatibility with future quantum networks. Here we emulate a quantum key distribution scheme with quantum-dot-generated single photons frequency-converted to 1550 nm, achieving count rates of 1.6 MHz with [Formula: see text] and asymptotic positive key rates over 175 km of telecom fibre. We show that the commonly used finite-key analysis for non-decoy state QKD drastically overestimates secure key acquisition times due to overly loose bounds on statistical fluctuations. Using the tighter multiplicative Chernoff bound to constrain the estimated finite key parameters, we reduce the required number of received signals by a factor 108. The resulting finite key rate approaches the asymptotic limit at all achievable distances in acquisition times of one hour, and at 100 km we generate finite keys at 13 kbps for one minute of acquisition. This result is an important step towards long-distance single-emitter quantum networking.


Asunto(s)
Fotones , Puntos Cuánticos , Estructuras de las Plantas , Tracción
3.
Rev Sci Instrum ; 93(1): 013103, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104947

RESUMEN

We present a cryogenic setup where an optical Fabry-Perot resonator is coupled to a single-mode optical fiber with coupling efficiency above 90% at mK temperatures without realignment during cooling down. The setup is prealigned at room temperature to compensate for the thermal contraction and change of the refractive index of the optical components during cooling down. The high coupling efficiency is achieved by keeping the setup rotation-symmetric around the optical axis. The majority of the setup components are made of Invar (FeNi36), which minimizes the thermal contraction. High coupling efficiency is essential in quantum optomechanical experiments.

4.
Phys Rev Lett ; 126(11): 113601, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33798387

RESUMEN

In multimode optomechanical systems, the mechanical modes can be coupled via the radiation pressure of the common optical mode, but the fidelity of the state transfer is limited by the optical cavity decay. Here we demonstrate stimulated Raman adiabatic passage (STIRAP) in optomechanics, where the optical mode is not populated during the coherent state transfer between the mechanical modes avoiding this decay channel. We show a state transfer of a coherent mechanical excitation between vibrational modes of a membrane in a high-finesse optical cavity with a transfer efficiency of 86%. Combined with exceptionally high mechanical quality factors, STIRAP between mechanical modes can enable generation, storage, and manipulation of long-lived mechanical quantum states, which is important for quantum information science and for the investigation of macroscopic quantum superpositions.

5.
Rev Sci Instrum ; 90(1): 015112, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30709182

RESUMEN

We present the design and implementation of a mechanical low-pass filter vibration isolation used to reduce the vibrational noise in a cryogen-free dilution refrigerator operated at 10 mK, intended for scanning probe techniques. We discuss the design guidelines necessary to meet the competing requirements of having a low mechanical stiffness in combination with a high thermal conductance. We demonstrate the effectiveness of our approach by measuring the vibrational noise levels of an ultrasoft mechanical resonator positioned above a superconducting quantum interference device. Starting from a cryostat base temperature of 8 mK, the vibration isolation can be cooled to 10.5 mK, with a cooling power of 113 µW at 100 mK. We use the low vibrations and low temperature to demonstrate an effective cantilever temperature of less than 20 mK. This results in a force sensitivity of less than 500 zN/Hz and an integrated frequency noise as low as 0.4 mHz in a 1 Hz measurement bandwidth.

6.
J Nanobiotechnology ; 16(1): 37, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29622040

RESUMEN

BACKGROUND: Short nucleic acid oligomers have found a wide range of applications in experimental physics, biology and medicine, and show potential for the treatment of acquired and genetic diseases. These applications rely heavily on the predictability of hybridization through Watson-Crick base pairing to allow positioning on a nanometer scale, as well as binding to the target transcripts, but also off-target binding to transcripts with partial homology. These effects are of particular importance in the development of therapeutic oligonucleotides, where off-target effects caused by the binding of mismatched sequences need to be avoided. RESULTS: We employ a novel method of probing DNA hybridization using optically active DNA-stabilized silver clusters (Ag-DNA) to measure binding efficiencies through a change in fluorescence intensity. In this way we can determine their location-specific sensitivity to individual mismatches in the sequence. The results reveal a strong dependence of the hybridization on the location of the mismatch, whereby mismatches close to the edges and center show a relatively minor impact. In parallel, we propose a simple model for calculating the annealing ratios of mismatched DNA sequences, which supports our experimental results. CONCLUSION: The primary result shown in this work is a demonstration of a novel technique to measure DNA hybridization using fluorescent Ag-DNA. With this technique, we investigated the effect of mismatches on the hybridization efficiency, and found a significant dependence on the location of individual mismatches. These effects are strongly influenced by the length of the used oligonucleotides. The novel probe method based on fluorescent Ag-DNA functions as a reliable tool in measuring this behavior. As a secondary result, we formulated a simple model that is consistent with the experimental data.


Asunto(s)
ADN/análisis , Hibridación de Ácido Nucleico/métodos , Oligonucleótidos/uso terapéutico , Plata/química , Sondas de ADN/metabolismo , Espectrometría de Fluorescencia
7.
Nat Commun ; 8(1): 824, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-29018193

RESUMEN

Systems of coupled mechanical resonators are useful for quantum information processing and fundamental tests of physics. Direct coupling is only possible with resonators of very similar frequency, but by using an intermediary optical mode, non-degenerate modes can interact and be independently controlled in a single optical cavity. Here we demonstrate coherent optomechanical state swapping between two spatially and frequency separated resonators with a mass ratio of 4. We find that, by using two laser beams far detuned from an optical cavity resonance, efficient state transfer is possible. Although the demonstration is classical, the same technique can be used to generate entanglement between oscillators in the quantum regime.Coupled mechanical resonators where each mode can be separately controlled are a promising system for quantum information processing. Here, Weaver et al. demonstrate coherent swapping of optomechanical states between two separate resonators.

9.
Sci Rep ; 6: 37897, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27901090

RESUMEN

DNA-stabilized silver clusters (Ag-DNA) show excellent promise as a multi-functional nanoagent for molecular investigations in living cells. The unique properties of these fluorescent nanomaterials allow for intracellular optical sensors with tunable cytotoxicity based on simple modifications of the DNA sequences. Three Ag-DNA nanoagent designs are investigated, exhibiting optical responses to the intracellular environments and sensing-capability of ions, functional inside living cells. Their sequence-dependent fluorescence responses inside living cells include (1) a strong splitting of the fluorescence peak for a DNA hairpin construct, (2) an excitation and emission shift of up to 120 nm for a single-stranded DNA construct, and (3) a sequence robust in fluorescence properties. Additionally, the cytotoxicity of these Ag-DNA constructs is tunable, ranging from highly cytotoxic to biocompatible Ag-DNA, independent of their optical sensing capability. Thus, Ag-DNA represents a versatile live-cell nanoagent addressable towards anti-cancer, patient-specific and anti-bacterial applications.


Asunto(s)
Colorantes Fluorescentes/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Plata/administración & dosificación , Técnicas Biosensibles/métodos , Células Cultivadas , ADN de Cadena Simple/genética , Dictyostelium/efectos de los fármacos , Fluorescencia , Nanoestructuras/administración & dosificación , Espectrometría de Fluorescencia/métodos
10.
Opt Lett ; 40(13): 3173-6, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26125395

RESUMEN

A homodyne measurement technique is demonstrated that enables direct observation of the coherence and phase of light that passed through a coupled quantum dot (QD)-microcavity system, which in turn enables clear identification of coherent and incoherent QD transitions. As an example, we study the effect of power-induced decoherence, where the QD transition saturates and incoherent emission from the excited state dominates at higher power. Further, we show that the same technique allows measurement of the quantum phase shift induced by a single QD in the cavity, which is strongly enhanced by cavity quantum electrodynamics effects.

11.
Science ; 344(6189): 1224-6, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24926001
12.
Artículo en Inglés | MEDLINE | ID: mdl-24827352

RESUMEN

We present a class of topological plasma configurations characterized by their toroidal and poloidal winding numbers, nt and np, respectively. The special case of nt=1 and np=1 corresponds to the Kamchatnov-Hopf soliton, a magnetic field configuration everywhere tangent to the fibers of a Hopf fibration so that the field lines are circular, linked exactly once, and form the surfaces of nested tori. We show that for nt∈Z+ and np=1, these configurations represent stable, localized solutions to the magnetohydrodynamic equations for an ideal incompressible fluid with infinite conductivity. Furthermore, we extend our stability analysis by considering a plasma with finite conductivity, and we estimate the soliton lifetime in such a medium as a function of the toroidal winding number.

13.
Opt Express ; 22(6): 6778-90, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24664026

RESUMEN

Silicon nitride (Si3N4) optical ring resonators provide exceptional opportunities for low-loss integrated optics. Here we study the transmission through a multimode waveguide coupled to a Si3N4 ring resonator. By coupling single-mode fibers to both input and output ports of the waveguide we selectively excite and probe combinations of modes in the waveguide. Strong asymmetric Fano resonances are observed and the degree of asymmetry can be tuned through the positions of the input and output fibers. The Fano resonance results from the interference between modes of the waveguide and light that couples resonantly to the ring resonator. We develop a theoretical model based on the coupled mode theory to describe the experimental results. The large extension of the optical modes out of the Si3N4 core makes this system promising for sensing applications.

14.
ACS Nano ; 7(11): 9798-807, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24090435

RESUMEN

We develop approaches to hold fluorescent silver clusters composed of only 10-20 atoms in nanoscale proximity, while retaining the individual structure of each cluster. This is accomplished using DNA clamp assemblies that incorporate a 10 atom silver cluster and a 15 or 16 atom silver cluster. Thermally modulated fluorescence resonance energy transfer (FRET) verifies assembly formation. Comparison to Förster theory, using measured spectral overlaps, indicates that the DNA clamps hold clusters within roughly 5 to 6 nm separations, in the range of the finest resolutions achievable on DNA scaffolds. The absence of spectral shifts in dual-cluster FRET pairs, relative to the individual clusters, shows that select few-atom silver clusters of different sizes are sufficiently stable to retain structural integrity within a single nanoscale DNA construct. The spectral stability of the cluster persists in a FRET pair with an organic dye molecule, in contrast to the blue-shifted emission of the dye.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Nanotecnología/métodos , Plata/química , Secuencia de Bases , Colorantes/química , ADN/química , Nanopartículas del Metal/química , Datos de Secuencia Molecular , Distribución Normal , Oligonucleótidos/química , Rodaminas/química , Espectrometría de Fluorescencia , Temperatura
15.
Opt Lett ; 38(17): 3308-11, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23988942

RESUMEN

Repetitive wet thermal oxidations of a tapered oxide aperture in a micropillar structure are demonstrated. After each oxidation step the confined optical modes are analyzed at room temperature. Three regimes are identified. First, the optical confinement increases when the aperture oxidizes toward the center. Then, the cavity modes shift by more than 30 nm when the taper starts to oxidize through the center, leading to a decrease in the optical path length. Finally, the resonance frequency levels off when the aperture is oxidized all the way through the micropillar, but confined optical modes with a high quality factor remain. This repetitive oxidation technique therefore enables precise control of the optical cavity volume or wavelength.

16.
Adv Mater ; 25(20): 2797-803, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23371742

RESUMEN

Fluorescent DNA-stabilized silver nanoclusters contain both cationic and neutral silver atoms. The absorbance spectra of compositionally pure solutions follow the trend expected for rod-shaped silver clusters, consistent with the polarized emission measured from individual nanoclusters. The data suggest a rod-like assembly of silver atoms, with silver cations mediating attachment to the bases.


Asunto(s)
ADN/química , ADN/ultraestructura , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Excipientes/química , Luz , Ensayo de Materiales , Dispersión de Radiación
17.
Opt Lett ; 37(22): 4678-80, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23164877

RESUMEN

We present a detailed experimental characterization of the spectral and spatial structure of the confined optical modes for oxide-apertured micropillar cavities, showing good-quality Hermite-Gaussian profiles, easily mode-matched to external fields. We further derive a relation between the frequency splitting of the transverse modes and the expected Purcell factor. Finally, we describe a technique to retrieve the profile of the confining refractive index distribution from the spatial profiles of the modes.

18.
Opt Express ; 20(22): 24714-26, 2012 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-23187235

RESUMEN

Hybrid quantum information protocols are based on local qubits, such as trapped atoms, NV centers, and quantum dots, coupled to photons. The coupling is achieved through optical cavities. Here we demonstrate far-field optimized H1 photonic crystal membrane cavities combined with an additional back reflection mirror below the membrane that meet the optical requirements for implementing hybrid quantum information protocols. Using numerical optimization we find that 80% of the light can be radiated within an objective numerical aperture of 0.8, and the coupling to a single-mode fiber can be as high as 92%. We experimentally prove the unique external mode matching properties by resonant reflection spectroscopy with a cavity mode visibility above 50%.

19.
Phys Rev Lett ; 109(2): 023601, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-23030158

RESUMEN

We present a scheme for achieving macroscopic quantum superpositions in optomechanical systems by using single photon postselection and detecting them with nested interferometers. This method relieves many of the challenges associated with previous optical schemes for measuring macroscopic superpositions and only requires the devices to be in the weak coupling regime. It requires only small improvements on currently achievable device parameters and allows the observation of decoherence on a time scale unconstrained by the system's optical decay time. Prospects for observing novel decoherence mechanisms are discussed.

20.
Opt Express ; 19(20): 19708-16, 2011 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-21996913

RESUMEN

We report on the development of optomechanical "trampoline" resonators composed of a tiny SiO(2)/Ta(2)O(5) dielectric mirror on a silicon nitride micro-resonator. We observe optical finesses of up to 4 × 10(4) and mechanical quality factors as high as 9 × 10(5) in relatively massive (~100 ng) and low frequency (10-200 kHz) devices. This results in a photon-phonon coupling efficiency considerably higher than previous Fabry-Perot-type optomechanical systems. These devices are well suited to ultra-sensitive force detection, ground-state optical cooling experiments, and demonstrations of quantum dynamics for such systems.


Asunto(s)
Sistemas Microelectromecánicos/instrumentación , Dispositivos Ópticos , Óptica y Fotónica , Fotones , Refractometría/instrumentación , Transductores , Diseño de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...