Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2022, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440634

RESUMEN

Tertiary lymphoid structures (TLS) are lymph node-like immune cell clusters that emerge during chronic inflammation in non-lymphoid organs like the kidney, but their origin remains not well understood. Here we show, using conditional deletion strategies of the canonical Notch signaling mediator Rbpj, that loss of endothelial Notch signaling in adult mice induces the spontaneous formation of bona fide TLS in the kidney, liver and lung, based on molecular, cellular and structural criteria. These TLS form in a stereotypical manner around parenchymal arteries, while secondary lymphoid structures remained largely unchanged. This effect is mediated by endothelium of blood vessels, but not lymphatics, since a lymphatic endothelial-specific targeting strategy did not result in TLS formation, and involves loss of arterial specification and concomitant acquisition of a high endothelial cell phenotype, as shown by transcriptional analysis of kidney endothelial cells. This indicates a so far unrecognized role for vascular endothelial cells and Notch signaling in TLS initiation.


Asunto(s)
Estructuras Linfoides Terciarias , Animales , Células Endoteliales , Endotelio Vascular , Inflamación , Ratones , Receptores Notch/genética , Transducción de Señal
2.
Cell Rep ; 38(5): 110334, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108538

RESUMEN

T cell migration via afferent lymphatics to draining lymph nodes (dLNs) depends on expression of CCR7 in T cells and CCL21 in the lymphatic vasculature. Once T cells have entered lymphatic capillaries, they slowly migrate into contracting collecting vessels. Here, lymph flow picks up, inducing T cell detachment and rapid transport to the dLNs. We find that the atypical chemokine receptor 4 (ACKR4), which binds and internalizes CCL19 and CCL21, is induced by lymph flow in endothelial cells lining lymphatic collectors, enabling them to scavenge these chemokines. In the absence of ACKR4, migration of T cells to dLNs in TPA-induced inflammation is significantly reduced. While entry into capillaries is not impaired, T cells accumulate in the ACKR4-deficient dermal collecting vessel segments. Overall, our findings identify an ACKR4-mediated mechanism by which lymphatic collectors facilitate the detachment of lymph-borne T cells in inflammation and their transition from crawling to free-flow toward the dLNs.


Asunto(s)
Inflamación/metabolismo , Receptores CCR7/metabolismo , Receptores CCR/metabolismo , Linfocitos T/metabolismo , Animales , Movimiento Celular/fisiología , Células Dendríticas/metabolismo , Células Endoteliales/metabolismo , Humanos , Ganglios Linfáticos/metabolismo , Vasos Linfáticos/metabolismo , Ratones , Piel/metabolismo
3.
Sci Adv ; 7(29)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34272244

RESUMEN

The mechanisms maintaining adult lymphatic vascular specialization throughout life and their role in coordinating inter-organ communication to sustain homeostasis remain elusive. We report that inactivation of the mechanosensitive transcription factor Foxc2 in adult lymphatic endothelium leads to a stepwise intestine-to-lung systemic failure. Foxc2 loss compromised the gut epithelial barrier, promoted dysbiosis and bacterial translocation to peripheral lymph nodes, and increased circulating levels of purine metabolites and angiopoietin-2. Commensal microbiota depletion dampened systemic pro-inflammatory cytokine levels, corrected intestinal lymphatic dysfunction, and improved survival. Foxc2 loss skewed the specialization of lymphatic endothelial subsets, leading to populations with mixed, pro-fibrotic identities and to emergence of lymph node-like endothelial cells. Our study uncovers a cross-talk between lymphatic vascular function and commensal microbiota, provides single-cell atlas of lymphatic endothelial subtypes, and reveals organ-specific and systemic effects of dysfunctional lymphatics. These effects potentially contribute to the pathogenesis of diseases, such as inflammatory bowel disease, cancer, or lymphedema.


Asunto(s)
Vasos Linfáticos , Linfedema , Células Endoteliales/metabolismo , Endotelio Linfático/metabolismo , Endotelio Linfático/patología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Vasos Linfáticos/metabolismo , Linfedema/metabolismo , Linfedema/patología
4.
J Exp Med ; 215(11): 2760-2777, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30355615

RESUMEN

The mammalian lymphatic system consists of strategically located lymph nodes (LNs) embedded into a lymphatic vascular network. Mechanisms underlying development of this highly organized system are not fully understood. Using high-resolution imaging, we show that lymphoid tissue inducer (LTi) cells initially transmigrate from veins at LN development sites using gaps in venous mural coverage. This process is independent of lymphatic vasculature, but lymphatic vessels are indispensable for the transport of LTi cells that egress from blood capillaries elsewhere and serve as an essential LN expansion reservoir. At later stages, lymphatic collecting vessels ensure efficient LTi cell transport and formation of the LN capsule and subcapsular sinus. Perinodal lymphatics also promote local interstitial flow, which cooperates with lymphotoxin-ß signaling to amplify stromal CXCL13 production and thereby promote LTi cell retention. Our data unify previous models of LN development by showing that lymphatics intervene at multiple points to assist LN expansion and identify a new role for mechanical forces in LN development.


Asunto(s)
Embrión de Mamíferos/embriología , Ganglios Linfáticos/embriología , Linfangiogénesis/fisiología , Vasos Linfáticos/embriología , Organogénesis/fisiología , Transducción de Señal/fisiología , Animales , Embrión de Mamíferos/inmunología , Ganglios Linfáticos/inmunología , Vasos Linfáticos/inmunología , Ratones , Ratones Noqueados
5.
Methods Mol Biol ; 1846: 97-129, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30242755

RESUMEN

Intraluminal valves of collecting lymphatic vessels ensure unidirectional lymph transport against hydrostatic pressure gradient. Mouse mesentery harbors up to 800 valves and represents a convenient model for lymphatic valve quantification, high resolution imaging of different stages of valve development as well as for analysis of valve function. The protocol describes embryonic and postnatal mesenteric lymphatic vessel preparation for whole-mount immunofluorescent staining and visualization of valve organization, quantification of main morphological parameters such as valve size and leaflet length, and the quantitative assessment of functional properties of adult valves using back-leak and closure tests.


Asunto(s)
Angiografía , Vasos Linfáticos/anatomía & histología , Vasos Linfáticos/fisiología , Mesenterio/anatomía & histología , Mesenterio/irrigación sanguínea , Angiografía/métodos , Animales , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía Fluorescente/métodos
6.
Int J Cancer ; 142(12): 2518-2528, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29313973

RESUMEN

HPV-positive head and neck squamous cell carcinoma (HNSCC) is increasingly frequent. Management is particularly debated in the case of postsurgical high-risk features, that is, positive surgical margins and extracapsular spread (ECS). In this increasingly complex emerging framework of HNSCC treatment, representative preclinical models are needed to support future clinical trials and advances in personalized medicine. Here, we present an immunocompetent mouse model based on the implantation of mouse tonsil epithelial HPV16-E6/E7-expressing cancer cells into the submental region of the floor-of-the-mouth. Primary tumors were found to replicate the patterns of human HNSCC local invasion and lymphatic dissemination. To study disease progression after surgery, tumors were removed likely leaving behind residual disease. Surgical resection of tumors was followed by a high rate of local recurrences (>90%) within the first 2-3 weeks. While only 50% of mice had lymph node metastases (LNM) at time of primary tumor excision, all mice with recurrent tumors showed evidence of LNM. To study the consecutive steps of LNM progression and distant metastasis development, LNs from tumor-bearing mice were transplanted into naïve recipient mice. Using this approach, transplanted LNs were found to recapitulate all stages and relevant histological features of regional metastasis progression, including ECS and metastatic spread to the lungs. Altogether, we have developed an immunocompetent HPV-positive HNSCC mouse model of postsurgical local recurrence and regional and distant metastasis progression suitable for preclinical studies.


Asunto(s)
Modelos Animales de Enfermedad , Metástasis Linfática/patología , Recurrencia Local de Neoplasia/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Animales , Progresión de la Enfermedad , Ratones , Ratones Endogámicos C57BL , Infecciones por Papillomavirus/complicaciones
7.
J Clin Invest ; 125(10): 3861-77, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26389677

RESUMEN

Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.


Asunto(s)
Células Endoteliales/citología , Factores de Transcripción Forkhead/fisiología , Sistema Linfático/crecimiento & desarrollo , Vasos Linfáticos/citología , Reología , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Apoptosis , Ciclo Celular , División Celular , Células Cultivadas , Citoesqueleto/ultraestructura , Células Endoteliales/patología , Factores de Transcripción Forkhead/antagonistas & inhibidores , Factores de Transcripción Forkhead/deficiencia , Humanos , Uniones Intercelulares/ultraestructura , Vasos Linfáticos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/fisiología , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Fibras de Estrés/ultraestructura , Estrés Mecánico , Factores de Transcripción/fisiología , Transcripción Genética , Transfección , Proteínas Señalizadoras YAP
8.
Front Neuroanat ; 8: 87, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25221478

RESUMEN

In the mouse, the Grueneberg ganglion (GG) is an olfactory subsystem implicated both in chemo- and thermo-sensing. It is specifically involved in the recognition of volatile danger cues such as alarm pheromones and structurally-related predator scents. No evidence for these GG sensory functions has been reported yet in other rodent species. In this study, we used a combination of histological and physiological techniques to verify the presence of a GG and investigate its function in the rat, hamster, and gerbil comparing with the mouse. By scanning electron microscopy (SEM) and transmitted electron microscopy (TEM), we found isolated or groups of large GG cells of different shapes that in spite of their gross anatomical similarities, display important structural differences between species. We performed a comparative and morphological study focusing on the conserved olfactory features of these cells. We found fine ciliary processes, mostly wrapped in ensheating glial cells, in variable number of clusters deeply invaginated in the neuronal soma. Interestingly, the glial wrapping, the amount of microtubules and their distribution in the ciliary processes were different between rodents. Using immunohistochemistry, we were able to detect the expression of known GG proteins, such as the membrane guanylyl cyclase G and the cyclic nucleotide-gated channel A3. Both the expression and the subcellular localization of these signaling proteins were found to be species-dependent. Calcium imaging experiments on acute tissue slice preparations from rodent GG demonstrated that the chemo- and thermo-evoked neuronal responses were different between species. Thus, GG neurons from mice and rats displayed both chemo- and thermo-sensing, while hamsters and gerbils showed profound differences in their sensitivities. We suggest that the integrative comparison between the structural morphologies, the sensory properties, and the ethological contexts supports species-dependent GG features prompted by the environmental pressure.

9.
Genes Dev ; 28(14): 1592-603, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25030698

RESUMEN

Primitive lymphatic vessels are remodeled into functionally specialized initial and collecting lymphatics during development. Lymphatic endothelial cell (LEC) junctions in initial lymphatics transform from a zipper-like to a button-like pattern during collecting vessel development, but what regulates this process is largely unknown. Angiopoietin 2 (Ang2) deficiency leads to abnormal lymphatic vessels. Here we found that an ANG2-blocking antibody inhibited embryonic lymphangiogenesis, whereas endothelium-specific ANG2 overexpression induced lymphatic hyperplasia. ANG2 inhibition blocked VE-cadherin phosphorylation at tyrosine residue 685 and the concomitant formation of button-like junctions in initial lymphatics. The defective junctions were associated with impaired lymph uptake. In collecting lymphatics, adherens junctions were disrupted, and the vessels leaked upon ANG2 blockade or gene deletion. ANG2 inhibition also suppressed the onset of lymphatic valve formation and subsequent valve maturation. These data identify ANG2 as the first essential regulator of the functionally important interendothelial cell-cell junctions that form during lymphatic development.


Asunto(s)
Angiopoyetina 2/metabolismo , Células Endoteliales/metabolismo , Uniones Intercelulares/fisiología , Angiopoyetina 2/antagonistas & inhibidores , Angiopoyetina 2/genética , Animales , Cadherinas/metabolismo , Embrión de Mamíferos , Células Endoteliales/citología , Eliminación de Gen , Linfangiogénesis/fisiología , Tejido Linfoide/embriología , Tejido Linfoide/patología , Ratones , Ratones Endogámicos C57BL , Fosforilación
10.
Blood ; 123(17): 2614-24, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24608974

RESUMEN

Lymphatic vasculature is increasingly recognized as an important factor both in the regulation of normal tissue homeostasis and immune response and in many diseases, such as inflammation, cancer, obesity, and hypertension. In the last few years, in addition to the central role of vascular endothelial growth factor (VEGF)-C/VEGF receptor-3 signaling in lymphangiogenesis, significant new insights were obtained about Notch, transforming growth factor ß/bone morphogenetic protein, Ras, mitogen-activated protein kinase, phosphatidylinositol 3 kinase, and Ca(2+)/calcineurin signaling pathways in the control of growth and remodeling of lymphatic vessels. An emerging picture of lymphangiogenic signaling is complex and in many ways distinct from the regulation of angiogenesis. This complexity provides new challenges, but also new opportunities for selective therapeutic targeting of lymphatic vasculature.


Asunto(s)
Regulación de la Expresión Génica , Linfangiogénesis/fisiología , Vasos Linfáticos/metabolismo , Transducción de Señal , Angiopoyetinas/metabolismo , Animales , Colágeno/metabolismo , Efrinas/metabolismo , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neovascularización Patológica/metabolismo , Estructura Terciaria de Proteína , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA