Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 80: 129108, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36538993

RESUMEN

For the past two decades, BTK a tyrosine kinase and member of the Tec family has been a drug target of significant interest due to its potential to selectively treat various B cell-mediated diseases such as CLL, MCL, RA, and MS. Owning to the challenges encountered in identifying drug candidates exhibiting the potency block B cell activation via BTK inhibition, the pharmaceutical industry has relied on the use of covalent/irreversible inhibitors to address this unmet medical need. Herein, we describe a medicinal chemistry campaign to identify structurally diverse reversible BTK inhibitors originating from HITS identified using a fragment base screen. The leads were optimized to improve the potency and in vivo ADME properties resulting in a structurally distinct chemical series used to develop and validate a novel in vivo CD69 and CD86 PD assay in rodents.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Tirosina Quinasas , Ratones , Animales , Agammaglobulinemia Tirosina Quinasa , Inhibidores de Proteínas Quinasas/química , Modelos Animales de Enfermedad , Antígeno B7-2
2.
Int J Inflam ; 2022: 2337363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265316

RESUMEN

Toll-like receptors (TLRs) play a critical role in innate immune system responses to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). A growing body of evidence suggests that excessive TLR-mediated innate immune system activation can lead to neuronal damage and precipitate or perpetuate neurodegenerative diseases. Among TLR subtypes, both TLR2 and TLR9 have been implicated in neurodegenerative disorders with increased expression of these receptors in the central nervous system being associated with pro-inflammatory signaling and increased burdens of pathologic aggregated proteins. In the current study, we characterized the actions of a combined TLR2/TLR9 antagonist, NPT1220-312, on pro-inflammatory signaling and cytokine release in monocyte/macrophage-derived heterologous cells, human microglia, and murine and human whole blood. NPT1220-312 potently blocked TLR2- and TLR9-mediated release of inflammatory cytokines in monocyte/macrophage cells and in human microglia. NPT1220-312 also blocked TLR2-mediated activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome including IL-1ß, IL-18, and apoptosis-associated speck-like protein containing a CARD (ASC) release to the culture medium of human differentiated macrophages. The ability of NPT1220-312 to inhibit TLR2 mediated pro-inflammatory release of chemokines and cytokines in situ was demonstrated using murine and human whole blood. Together, these findings suggest that blockade of TLR2 and TLR9 may reduce inappropriate production of pro-inflammatory cytokines and chemokines from peripheral and central immune cells and thus potentially provide therapeutic benefit in neuroinflammatory/neurodegenerative disorders.

3.
Bioorg Med Chem ; 44: 116275, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34314938

RESUMEN

Bruton's tyrosine kinase (BTK) is an essential node on the BCR signaling in B cells, which are clinically validated to play a critical role in B-cell lymphomas and various auto-immune diseases such as Multiple Sclerosis (MS), Pemphigus, and rheumatoid arthritis (RA). Although non-selective irreversible BTK inhibitors have been approved for oncology, due to the emergence of drug resistance in B-cell lymphoma associated with covalent inhibitor, there an unmet medical need to identify reversible, selective, potent BTK inhibitor as viable therapeutics for patients. Herein, we describe the identification of Hits and subsequence optimization to improve the physicochemical properties, potency and kinome selectivity leading to the discovery of a novel class of BTK inhibitors. Utilizing Met ID and structure base design inhibitors were synthesized with increased in vivo metabolic stability and oral exposure in rodents suitable for advancing to lead optimization.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacocinética , Agammaglobulinemia Tirosina Quinasa/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Relación Estructura-Actividad
4.
Brain ; 144(12): 3692-3709, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34117864

RESUMEN

NPT520-34 is a clinical stage, small molecule being developed for the treatment of Parkinson's disease and other neurodegenerative disorders. The therapeutic potential of NPT520-34 was first suggested by findings from cell-based assays of alpha-synuclein clearance. As reported here, NPT520-34 was subsequently evaluated for therapeutically relevant actions in a transgenic animal model of Parkinson's disease that overexpresses human alpha-synuclein and in an acute lipopolysaccharide-challenge model using wild-type mice. Daily administration of NPT520-34 to mThy1-alpha-synuclein (Line 61) transgenic mice for 1 or 3 months resulted in reduced alpha-synuclein pathology, reduced expression of markers of neuroinflammation, and improvements in multiple indices of motor function. In a lipopolysaccharide-challenge model using wild-type mice, a single dose of NPT520-34 reduced lipopolysaccharide-evoked increases in the expression of several pro-inflammatory cytokines in plasma. These findings demonstrate the beneficial effects of NPT520-34 on both inflammation and protein-pathology end points, with consequent improvements in motor function in an animal model of Parkinson's disease. These findings further indicate that NPT520-34 may have two complementary actions: (i) to increase the clearance of neurotoxic protein aggregates; and (ii) to directly attenuate inflammation. NPT520-34 treatment may thereby address two of the predominate underlying pathophysiological aspects of neurodegenerative disorders such as Parkinson's disease.


Asunto(s)
Encéfalo/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Trastornos Parkinsonianos/patología , Animales , Encéfalo/patología , Humanos , Ratones , Ratones Transgénicos , Sinucleinopatías/patología
5.
Bioorg Med Chem ; 27(13): 2905-2913, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31138459

RESUMEN

Since the approval of ibrutinib for the treatment of B-cell malignancies in 2012, numerous clinical trials have been reported using covalent inhibitors to target Bruton's tyrosine kinase (BTK) for oncology indications. However, a formidable challenge for the pharmaceutical industry has been the identification of reversible, selective, potent molecules for inhibition of BTK. Herein, we report application of Tethering-fragment-based screens to identify low molecular weight fragments which were further optimized to improve on-target potency and ADME properties leading to the discovery of reversible, selective, potent BTK inhibitors suitable for pre-clinical proof-of-concept studies.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Humanos , Inhibidores de Proteínas Quinasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA