RESUMEN
A better understanding of nicotine neurobiology is needed to reduce or prevent chronic addiction, ameliorate the detrimental effects of nicotine withdrawal, and increase successful cessation of use. Nicotine binds and activates two astrocyte-expressed nicotinic acetylcholine receptors (nAChRs), α4ß2 and α7. We recently found that Protein kinase B-ß (Pkb-ß or Akt2) expression is restricted to astrocytes in mice and humans. To determine if AKT2 plays a role in astrocytic nicotinic responses, we generated astrocyte-specific Akt2 conditional knockout (cKO) and full Akt2 KO mice for in vivo and in vitro experiments. For in vivo studies, we examined mice exposed to chronic nicotine for two weeks in drinking water (200 µg/mL) and following acute nicotine challenge (0.09, 0.2 mg/kg) after 24 hrs. Our in vitro studies used cultured mouse astrocytes to measure nicotine-dependent astrocytic responses. We validated our approaches using lipopolysaccharide (LPS) exposure inducing astrogliosis. Sholl analysis was used to measure glial fibrillary acidic protein responses in astrocytes. Our data show that wild-type (WT) mice exhibit increased astrocyte morphological complexity during acute nicotine exposure, with decreasing complexity during chronic nicotine use, whereas Akt2 cKO mice showed increased astrocyte morphology complexity. In culture, we found that 100µM nicotine was sufficient for morphological changes and blocking α7 or α4ß2 nAChRs prevented observed morphologic changes. Finally, we performed conditioned place preference (CPP) in Akt2 cKO mice and found that astrocytic AKT2 deficiency reduced nicotine preference compared to controls. These findings show the importance of nAChRs and Akt2 signaling in the astrocytic response to nicotine.
RESUMEN
Environmental change poses a devastating risk to human and environmental health. Rapid assessment of water conditions is necessary for monitoring, evaluating, and addressing this global health danger. Sentinels or biological monitors can be deployed in the field using minimal resources to detect water quality changes in real time, quickly and cheaply. Zebrafish (Danio rerio) are ideal sentinels for detecting environmental changes due to their biomedical tool kit, widespread geographic distribution, and well-characterized phenotypic responses to environmental disturbances. Here, we demonstrate the utility of zebrafish sentinels by characterizing phenotypic differences in wild zebrafish between two field sites in India. Site 1 was a rural environment with flowing water, low-hypoxic conditions, minimal human-made debris, and high iron and lead concentrations. Site 2 was an urban environment with still water, hypoxic conditions, plastic pollution, and high arsenic, iron, and chromium concentrations. We found that zebrafish from Site 2 were smaller, more cohesive, and less active than Site 1 fish. We also found sexually dimorphic body shapes within the Site 2, but not the Site 1, population. Advancing zebrafish sentinel research and development will enable rapid detection, evaluation, and response to emerging global health threats.