Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Pharmacol ; 13: 832589, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341216

RESUMEN

Signaling through calcitonin gene-related peptide (CGRP) receptors is associated with pain, migraine, and energy expenditure. Small molecule and monoclonal antibody CGRP receptor antagonists that block endogenous CGRP action are in clinical use as anti-migraine therapies. By comparison, the potential utility of peptide antagonists has received less attention due to suboptimal pharmacokinetic properties. Lipidation is an established strategy to increase peptide half-life in vivo. This study aimed to explore the feasibility of developing lipidated CGRP peptide antagonists that retain receptor antagonist activity in vitro and attenuate endogenous CGRP action in vivo. CGRP peptide analogues based on the archetypal CGRP receptor antagonist, CGRP8-37, were palmitoylated at the N-terminus, position 24, and near the C-terminus at position 35. The antagonist activities of the lipidated peptide analogues were tested in vitro using transfected Cos-7 cells expressing either the human or mouse CGRP receptor, amylin subtype 1 (AMY1) receptor, adrenomedullin (AM) receptors, or calcitonin receptor. Antagonist activities were also evaluated in SK-N-MC cells that endogenously express the human CGRP receptor. Lipidated peptides were then tested for their ability to antagonize endogenous CGRP action in vivo using a capsaicin-induced dermal vasodilation (CIDV) model in C57/BL6J mice. All lipidated peptides except for the C-terminally modified analogue retained potent antagonist activity compared to CGRP8-37 towards the CGRP receptor. The lipidated peptides also retained, and sometimes gained, antagonist activities at AMY1, AM1 and AM2 receptors. Several lipidated peptides produced robust inhibition of CIDV in mice. This study demonstrates that selected lipidated peptide antagonists based on αCGRP8-37 retain potent antagonist activity at the CGRP receptor and are capable of inhibition of endogenous CGRP action in vivo. These findings suggest that lipidation can be applied to peptide antagonists, such as αCGRP8-37 and are a potential strategy for antagonizing CGRP action.

2.
Br J Pharmacol ; 179(3): 416-434, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34289083

RESUMEN

BACKGROUND AND PURPOSE: The calcitonin (CT) receptor family is complex, comprising two receptors (the CT receptor [CTR] and the CTR-like receptor [CLR]), three accessory proteins (RAMPs) and multiple endogenous peptides. This family contains several important drug targets, including CGRP, which is targeted by migraine therapeutics. The pharmacology of this receptor family is poorly characterised in species other than rats and humans. To facilitate understanding of translational and preclinical data, we need to know the receptor pharmacology of this family in mice. EXPERIMENTAL APPROACH: Plasmids encoding mouse CLR/CTR and RAMPs were transiently transfected into Cos-7 cells. cAMP production was measured in response to agonists in the absence or presence of antagonists. KEY RESULTS: We report the first synthesis and characterisation of mouse adrenomedullin, adrenomedullin 2 and ßCGRP and of mouse CTR without or with mouse RAMPs. Receptors containing m-CTR had subtly different pharmacology than human receptors; they were promiscuous in their pharmacology, both with and without RAMPs. Several peptides, including mouse αCGRP and mouse adrenomedullin 2, were potent agonists of the m-CTR:m-RAMP3 complex. Pharmacological profiles of receptors comprising m-CLR:m-RAMPs were generally similar to those of their human counterparts, albeit with reduced specificity. CONCLUSION AND IMPLICATIONS: Mouse receptor pharmacology differed from that in humans, with mouse receptors displaying reduced discrimination between ligands. This creates challenges for interpreting which receptor may underlie an effect in preclinical models and thus translation of findings from mice to humans. It also highlights the need for new ligands to differentiate between these complexes. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary).. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.


Asunto(s)
Trastornos Migrañosos , Hormonas Peptídicas , Adrenomedulina/metabolismo , Adrenomedulina/farmacología , Animales , Calcitonina/metabolismo , Calcitonina/farmacología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Proteína Similar al Receptor de Calcitonina/química , Humanos , Ligandos , Ratones , Ratas , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Proteínas Modificadoras de la Actividad de Receptores/metabolismo , Receptores de Adrenomedulina , Receptores de Calcitonina/química
3.
ChemMedChem ; 16(8): 1308-1315, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33320428

RESUMEN

A second-generation enantiospecific synthesis of spiroleucettadine is described. The original reported antibacterial activity was not observed when the experiment was repeated on the synthetic samples; however, significant anti-proliferative activity was uncovered for both enantiomers of spiroleucettadine. Comparison of the optical rotational data and ORD-CD spectra of both enantiomers and the reported spectrum from the natural source have not provided a definitive answer regarding the absolute stereochemistry of naturally occurring spiroleucettadine. Efforts then focussed on alteration at the C-4 and C-5 positions of the slightly more active (-)-spiroleucettadine. Ten analogues were synthesised, with three analogues found to possess similar anti-proliferative profiles to spiroleucettadine against the H522 lung cancer cell line.


Asunto(s)
Antineoplásicos/farmacología , Imidazoles/farmacología , Compuestos de Espiro/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Humanos , Imidazoles/síntesis química , Compuestos de Espiro/síntesis química , Estereoisomerismo
4.
ACS Chem Biol ; 15(6): 1408-1416, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32364695

RESUMEN

The neuropancreatic polypeptide hormone amylin forms pancreatic islet amyloid in type-2 diabetes. Islet amyloid formation contributes to ß-cell death in the disease and to the failure of islet transplants, but the features which influence amylin amyloidogenicity are not understood. We constructed an amino acid sequence alignment of 202 sequences of amylin and used the alignment to design consensus sequences of vertebrate amylins, mammalian amylins, and primate amylins. Amylin is highly conserved, but there are differences between human amylin and each consensus sequence, ranging from one to six substitutions. Biophysical analysis shows that all of the consensus sequences form amyloid but do so more slowly than human amylin in vitro. The rate of amyloid formation by the primate consensus sequence is 3- to 4-fold slower than human amylin; the mammalian consensus sequence is approximately 20- to 25-fold slower, and the vertebrate consensus sequence is approximately 6-fold slower. All of the consensus sequences are moderately less toxic than human amylin toward a cultured ß-cell line, with the vertebrate consensus sequence displaying the largest reduction in toxicity of 3- to 4-fold. All of the consensus sequences activate a human amylin receptor and exhibit only modest reductions in activity, ranging from 3- to 4-fold as judged by a cAMP production assay. The analysis argues that there is no strong selective evolutionary pressure to avoid the formation of islet amyloid and provides information relevant to the design of less amyloidogenic amylin variants.


Asunto(s)
Amiloide/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Secuencia de Aminoácidos , Amiloide/química , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Secuencia de Consenso , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Modelos Moleculares , Ratas , Alineación de Secuencia
5.
ACS Pharmacol Transl Sci ; 3(2): 305-320, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32296770

RESUMEN

Class B G protein-coupled receptors are highly therapeutically relevant but challenges remain in identifying suitable small-molecule drugs. The calcitonin-like receptor (CLR) in particular is linked to conditions such as migraine, cardiovascular disease, and inflammatory bowel disease. The CLR cannot act as a cell-surface receptor alone but rather must couple to one of three receptor activity-modifying proteins (RAMPs), forming heterodimeric receptors for the peptides adrenomedullin and calcitonin gene-related peptide. These peptides have extended binding sites across their receptors. This is one reason why there are few small-molecule ligands that can modulate these receptors. Here we describe small molecules that are able to positively modulate the signaling of the CLR with all three RAMPs but are not active at the related calcitonin receptor. These compounds were selected from a ß-arrestin recruitment screen, coupled with rounds of medicinal chemistry to improve their activity. Translational potential is shown as the compounds can positively modulate cAMP signaling in a vascular cell line model. Binding experiments do not support an extracellular domain binding site; however, molecular modeling reveals potential allosteric binding sites in multiple receptor regions. These are the first small-molecule positive modulators described for the CLR:RAMP complexes.

6.
Eur J Pharmacol ; 865: 172749, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31654622

RESUMEN

Non-small cell lung cancer with ALK rearrangements can be targeted effectively with ALK inhibitors such as crizotinib. However, cancer progression typically occurs within a year as drug resistance develops. One strategy to overcome this drug resistance is to determine if novel cytotoxic agents retain the ability to kill lung cancer cells that have developed ALK inhibitor resistance. We therefore examined curcumin, a drug with anticancer properties, and 2 s-generation curcumin derivatives (1-methyl-3,5-bis[(E)-4-pyridyl) methylidene]-4-piperidone (RL66) and 1-isopropyl-3,5-bis[(pyridine-3-yl) methylene]piperidin-4-one (RL118)) in lung cancer cell lines. The cytotoxicity of curcumin, RL66, and RL118 were tested in both ALK+ lung cancer cells (H3122), crizotinib resistant ALK+ cells (CR-H3122) and ALK- lung cancer cells (A549), both alone and in combination with crizotinib. ALK+ cells were 2-3x more sensitive to RL66 and RL118 than ALK- cells, with the drugs' eliciting IC50 values in the range of 0.7-1 µM in H3122 cells. Retained cytotoxic potency of the curcumin derivatives in crizotinib resistant cells indicated that mechanisms of resistance to the two drug types are independent, with resistance to ALK inhibitors not necessarily causing cross-resistance to curcumin derivatives. This was further corroborated by drug combination analysis where the effect of the drugs in combination was consistent with Bliss additivity, consistent with independent targets for crizotinib and curcumin derivatives. Results from Western blotting showed that RL118 (2 µM) inhibited p-ALK/ALK by ~50%, which was not as potent as the 90% inhibition elicited by crizotinib (0.25 µM). Since this is the primary mechanism of crizotinib cytotoxicity this provides further evidence of independent mechanisms of toxicity.


Asunto(s)
Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Crizotinib/farmacología , Curcumina/análogos & derivados , Curcumina/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Quinasa de Linfoma Anaplásico/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/metabolismo
7.
Cephalalgia ; 39(3): 403-419, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29566540

RESUMEN

BACKGROUND: Calcitonin gene-related peptide is an important target for migraine and other painful neurovascular conditions. Understanding the normal biological functions of calcitonin gene-related peptide is critical to understand the mechanisms of calcitonin gene-related peptide-blocking therapies as well as engineering improvements to these medications. Calcitonin gene-related peptide is closely related to other peptides in the calcitonin gene-related peptide family of peptides, including amylin. Relatedness in peptide sequence and in receptor biology makes it difficult to tease apart the contributions that each peptide and receptor makes to physiological processes and to disorders. SUMMARY: The focus of this review is the expression of calcitonin gene-related peptide, related peptides and their receptors in the central nervous system. Calcitonin gene-related peptide is expressed throughout the nervous system, whereas amylin and adrenomedullin have only limited expression at discrete sites in the brain. The components of two receptors that respond to calcitonin gene-related peptide, the calcitonin gene-related peptide receptor (calcitonin receptor-like receptor with receptor activity-modifying protein 1) and the AMY1 receptor (calcitonin receptor with receptor activity-modifying protein 1), are expressed throughout the nervous system. Understanding expression of the peptides and their receptors lays the foundation for more deeply understanding their physiology, pathophysiology and therapeutic use.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Sistema Nervioso Central/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Proteína 1 Modificadora de la Actividad de Receptores/genética , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
ACS Chem Biol ; 13(9): 2747-2757, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30086232

RESUMEN

Islet amyloid formation contributes to ß-cell death and dysfunction in type-2 diabetes and to the failure of islet transplants. Amylin (islet amyloid polypeptide, IAPP), a normally soluble 37 residue polypeptide hormone produced in the pancreatic ß-cells, is responsible for amyloid formation in type-2 diabetes and is deficient in type-1 diabetes. Amylin normally plays an adaptive role in metabolism, and the development of nontoxic, non-amyloidogenic, bioactive variants of human amylin are of interest for use as adjuncts to insulin therapy. Naturally occurring non-amyloidogenic variants are of interest for xenobiotic transplantation and because they can provide clues toward understanding the amyloidogenicity of human amylin. The sequence of amylin is well-conserved among species, but sequence differences strongly correlate with in vitro amyloidogenicity and with islet amyloid formation in vivo. Bovine amylin differs from the human peptide at 10 positions and is one of the most divergent among known amylin sequences. We show that bovine amylin oligomerizes but is not toxic to cultured ß-cells and that it is considerably less amyloidogenic than the human polypeptide and is only a low-potency agonist at human amylin-responsive receptors. The bovine sequence contains several nonconservative substitutions relative to human amylin, including His to Pro, Ser to Pro, and Asn to Lys replacements. The effect of these substitutions is analyzed in the context of wild-type human amylin; the results provide insight into their role in receptor activation, the mode of assembly of human amylin, and the design of soluble amylin analogues.


Asunto(s)
Amiloide/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Secuencia de Aminoácidos , Amiloide/química , Amiloide/ultraestructura , Animales , Bovinos , Células Cultivadas , Secuencia Conservada , Humanos , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/química
9.
ACS Pharmacol Transl Sci ; 1(1): 32-49, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32219203

RESUMEN

The pancreatic peptide hormone, amylin, plays a critical role in the control of appetite, and synergizes with other key metabolic hormones such as glucagon-like peptide 1 (GLP-1). There is opportunity to develop potent and long-acting analogues of amylin or hybrids between these and GLP-1 mimetics for treating obesity. To achieve this, interrogation of how the 37 amino acid amylin peptide engages with its complex receptor system is required. We synthesized an extensive library of peptides to profile the human amylin sequence, determining the role of its disulfide loop, amidated C-terminus and receptor "capture" and "activation" regions in receptor signaling. We profiled four signaling pathways with different ligands at multiple receptor subtypes, in addition to exploring selectivity determinants between related receptors. Distinct roles for peptide subregions in receptor binding and activation were identified, resulting in peptides with greater activity than the native sequence. Enhanced peptide activity was preserved in the brainstem, the major biological target for amylin. Interpretation of our data using full-length active receptor models supported by molecular dynamics, metadynamics, and supervised molecular dynamics simulations guided the synthesis of a potent dual agonist of GLP-1 and amylin receptors. The data offer new insights into the function of peptide amidation, how allostery drives peptide-receptor interactions, and provide a valuable resource for the development of novel amylin agonists for treating diabetes and obesity.

10.
Org Biomol Chem ; 14(23): 5238-45, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27139251

RESUMEN

Pramlintide (Symlin®), a synthetic analogue of the neuroendocrine hormone amylin, is devoid of the tendency to form cytotoxic amyloid fibrils and is currently used in patients with type I and type II diabetes mellitus as an adjunctive therapy with insulin or insulin analogues. As part of an on-going search for a pramlintide analogue with improved pharmacokinetic properties, we herein report the synthesis of mono- and di-glycosylated analogues of pramlintide and their activity at the AMY1(a) receptor. Introduction of N-glycosylated amino acids into the pramlintide sequence afforded the native N-linked glycomimetics whilst use of Cu(i)-catalysed azide-alkyne 1,3-dipolar cycloaddition (click) chemistry delivered 1,2,3-triazole linked glycomimetics. AMY1(a) receptor activity was retained by incorporation of single or multiple GlcNAc moieties at positions 21 and 35 of native pramlintide. Importantly, no difference in AMY1(a) activity was observed between native N-linked glycomimetics and 1,2,3-triazole linked glycomimetics demonstrating that the click variants can act as surrogates for the native N-glycosides in a biological setting.


Asunto(s)
Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/síntesis química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/metabolismo , Secuencia de Aminoácidos , Materiales Biomiméticos/química , Química Clic , Glicosilación , Polipéptido Amiloide de los Islotes Pancreáticos/química
11.
Br J Pharmacol ; 173(12): 1883-98, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27061187

RESUMEN

Amylin is an important, but poorly understood, 37 amino acid glucoregulatory hormone with great potential to target metabolic diseases. A working example that the amylin system is one worth developing is the FDA-approved drug used in insulin-requiring diabetic patients, pramlintide. However, certain characteristics of pramlintide pharmacokinetics and formulation leave considerable room for further development of amylin-mimetic compounds. Given that amylin-mimetic drug design and development is an active area of research, surprisingly little is known about the structure/function relationships of amylin. This is largely due to the unfavourable aggregative and solubility properties of the native peptide sequence, which are further complicated by the composition of amylin receptors. These are complexes of the calcitonin receptor with receptor activity-modifying proteins. This review explores what is known of the structure-function relationships of amylin and provides insights that can be drawn from the closely related peptide, CGRP. We also describe how this information is aiding the development of more potent and stable amylin mimetics, including peptide hybrids.


Asunto(s)
Agonistas de los Receptores de Amilina/farmacología , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/metabolismo , Agonistas de los Receptores de Amilina/química , Animales , Diseño de Fármacos , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Relación Estructura-Actividad
12.
Am J Physiol Regul Integr Comp Physiol ; 310(9): R788-93, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26911465

RESUMEN

The calcitonin receptor (CTR) is relevant to three hormonal systems: amylin, calcitonin, and calcitonin gene-related peptide (CGRP). Receptors for amylin and calcitonin are targets for treating obesity, diabetes, and bone disorders. CGRP receptors represent a target for pain and migraine. Amylin receptors (AMY) are a heterodimer formed by the coexpression of CTR with receptor activity-modifying proteins (RAMPs). CTR with RAMP1 responds potently to both amylin and CGRP. The brain stem is a major site of action for circulating amylin and is a rich site of CGRP binding. This study aimed to enhance our understanding of these hormone systems by mapping CTR expression in the human brain stem, specifically the medulla oblongata. Widespread CTR-like immunoreactivity was observed throughout the medulla. Dense CTR staining was noted in several discrete nuclei, including the nucleus of the solitary tract, the hypoglossal nucleus, the cuneate nucleus, spinal trigeminal nucleus, the gracile nucleus, and the inferior olivary nucleus. CTR staining was also observed in the area postrema, the lateral reticular nucleus, and the pyramidal tract. The extensive expression of CTR in the medulla suggests that CTR may be involved in a wider range of functions than currently appreciated.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Bulbo Raquídeo/metabolismo , Receptores de Calcitonina/metabolismo , Anciano , Anciano de 80 o más Años , Anticuerpos/inmunología , Autorradiografía , Estudios de Cohortes , Humanos , Ensayo de Unión Radioligante , Receptores de Calcitonina/genética
13.
Ann Clin Transl Neurol ; 2(6): 595-608, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26125036

RESUMEN

OBJECTIVE: The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide, calcitonin gene-related peptide (CGRP), is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. METHODS: Receptor expression was determined using Taqman G protein-coupled receptor arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. RESULTS: mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1]) and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. INTERPRETATION: The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA