Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PeerJ ; 9: e12245, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721971

RESUMEN

Evidence-based decision-making is most effective with comprehensive access to scientific studies. If studies face significant publication delays or barriers, the useful information they contain may not reach decision-makers in a timely manner. This represents a potential problem for mission-oriented disciplines where access to the latest data is required to ensure effective actions are undertaken. We sought to analyse the severity of publication delay in conservation science-a field that requires urgent action to prevent the loss of biodiversity. We used the Conservation Evidence database to assess the length of publication delay (time from finishing data collection to publication) in the literature that tests the effectiveness of conservation interventions. From 7,447 peer-reviewed and non-peer-reviewed studies of conservation interventions published over eleven decades, we find that the raw mean publication delay was 3.2 years (±2SD = 0.1) and varied by conservation subject. A significantly shorter delay was observed for studies focused on Bee Conservation, Sustainable Aquaculture, Management of Captive Animals, Amphibian Conservation, and Control of Freshwater Invasive Species (Estimated Marginal Mean range from 1.4-1.9 years). Publication delay was significantly shorter for the non-peer-reviewed literature (Estimated Marginal Mean delay of 1.9 years ± 0.2) compared to the peer-reviewed literature (i.e., scientific journals; Estimated Marginal Mean delay of 3.0 years ± 0.1). We found publication delay has significantly increased over time (an increase of ~1.2 years from 1912 (1.4 years ± 0.2) to 2020 (2.6 years ± 0.1)), but this change was much weaker and non-significant post-2000s; we found no evidence for any decline. There was also no evidence that studies on more threatened species were subject to a shorter delay-indeed, the contrary was true for mammals, and to a lesser extent for birds. We suggest a range of possible ways in which scientists, funders, publishers, and practitioners can work together to reduce delays at each stage of the publication process.

2.
Zoo Biol ; 38(3): 305-315, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30868683

RESUMEN

Zoos have played a pivotal role in the successful reinforcement and reintroduction of species threatened with extinction, but prioritization is required in the face of increasing need and limited capacity. One means of prioritizing between species of equal threat status when establishing new breeding programs is the consideration of evolutionary distinctness (ED). More distinct species have fewer close relatives such that their extinction would result in a greater overall loss to the Tree of Life. Considering global ex situ holdings of birds (a group with a complete and well-detailed evolutionary tree), we investigate the representation of at-risk and highly evolutionarily distinct species in global zoo holdings. We identified a total of 2,236 bird species indicated by the Zoological Information Management System as being held in zoological institutions worldwide. As previously reported, imperiled species (defined as those possessing endangered or critically endangered threat status) in this database are less likely to be held in zoos than non-imperiled species. However, we find that species possessing ED scores within the top 10% of all bird species are more likely to be held in zoos than other species, possibly because they possess unique characteristics that have historically made them popular exhibits. To assist with the selection of high priority ED species for future zoo conservation programs, we provide a list of imperiled species currently not held in zoos, ranked by ED. This list highlights species representing particular priorities for ex situ conservation planners, and represents a practical tool for improving the conservation value of zoological collections.


Asunto(s)
Aves/clasificación , Especies en Peligro de Extinción , Filogenia , Animales , Animales de Zoológico , Aves/genética , Cruzamiento , Conservación de los Recursos Naturales/métodos
3.
Microb Biotechnol ; 10(2): 381-394, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27995742

RESUMEN

The fungus Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a lethal epizootic disease of amphibians. Rapid identification of the pathogen and biosecurity is essential to prevent its spread, but current laboratory-based tests are time-consuming and require specialist equipment. Here, we describe the generation of an IgM monoclonal antibody (mAb), 5C4, specific to Bd as well as the related salamander and newt pathogen Batrachochytrium salamandrivorans (Bsal). The mAb, which binds to a glycoprotein antigen present on the surface of zoospores, sporangia and zoosporangia, was used to develop a lateral-flow assay (LFA) for rapid (15 min) detection of the pathogens. The LFA detects known lineages of Bd and also Bsal, as well as the closely related fungus Homolaphlyctis polyrhiza, but does not detect a wide range of related and unrelated fungi and oomycetes likely to be present in amphibian habitats. When combined with a simple swabbing procedure, the LFA was 100% accurate in detecting the water-soluble 5C4 antigen present in skin, foot and pelvic samples from frogs, newts and salamanders naturally infected with Bd or Bsal. Our results demonstrate the potential of the portable LFA as a rapid qualitative assay for tracking these amphibian pathogens and as an adjunct test to nucleic acid-based detection methods.


Asunto(s)
Antígenos Fúngicos/análisis , Cromatografía de Afinidad/métodos , Quitridiomicetos/aislamiento & purificación , Pruebas Diagnósticas de Rutina/métodos , Micosis/veterinaria , Urodelos/microbiología , Medicina Veterinaria/métodos , Animales , Anticuerpos Antifúngicos/inmunología , Anticuerpos Monoclonales/inmunología , Inmunoglobulina M/inmunología , Micosis/diagnóstico , Micosis/microbiología
4.
BMC Genet ; 11: 31, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20429926

RESUMEN

BACKGROUND: Anadromous migratory fish species such as Atlantic salmon (Salmo salar) have significant economic, cultural and ecological importance, but present a complex case for management and conservation due to the range of their migration. Atlantic salmon exist in rivers across the North Atlantic, returning to their river of birth with a high degree of accuracy; however, despite continuing efforts and improvements in in-river conservation, they are in steep decline across their range. Salmon from rivers across Europe migrate along similar routes, where they have, historically, been subject to commercial netting. This mixed stock exploitation has the potential to devastate weak and declining populations where they are exploited indiscriminately. Despite various tagging and marking studies, the effect of marine exploitation and the marine element of the salmon lifecycle in general, remain the "black-box" of salmon management. In a number of Pacific salmonid species and in several regions within the range of the Atlantic salmon, genetic stock identification and mixed stock analysis have been used successfully to quantify exploitation rates and identify the natal origins of fish outside their home waters - to date this has not been attempted for Atlantic salmon in the south of their European range. RESULTS: To facilitate mixed stock analysis (MSA) of Atlantic salmon, we have produced a baseline of genetic data for salmon populations originating from the largest rivers from Spain to northern Scotland, a region in which declines have been particularly marked. Using 12 microsatellites, 3,730 individual fish from 57 river catchments have been genotyped. Detailed patterns of population genetic diversity of Atlantic salmon at a sub-continent-wide level have been evaluated, demonstrating the existence of regional genetic signatures. Critically, these appear to be independent of more commonly recognised terrestrial biogeographical and political boundaries, allowing reporting regions to be defined. The implications of these results on the accuracy of MSA are evaluated and indicate that the success of MSA is not uniform across the range studied; our findings indicate large differences in the relative accuracy of stock composition estimates and MSA apportioning across the geographical range of the study, with a much higher degree of accuracy achieved when assigning and apportioning to populations in the south of the area studied. This result probably reflects the more genetically distinct nature of populations in the database from Spain, northwest France and southern England. Genetic stock identification has been undertaken and validation of the baseline microsatellite dataset with rod-and-line and estuary net fisheries of known origin has produced realistic estimates of stock composition at a regional scale. CONCLUSIONS: This southern European database and supporting phylogeographic and mixed-stock analyses of net samples provide a unique tool for Atlantic salmon research and management, in both their natal rivers and the marine environment. However, the success of MSA is not uniform across the area studied, with large differences in the relative accuracy of stock composition estimates and MSA apportioning, with a much higher degree of accuracy achieved when assigning and apportioning to populations in the south of the region. More broadly, this study provides a basis for long-term salmon management across the region and confirms the value of this genetic approach for fisheries management of anadromous species.


Asunto(s)
Genética de Población , Salmo salar/genética , Migración Animal , Animales , Europa (Continente) , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...