RESUMEN
We analysed SARS-CoV-2 PCR Cq values from 3,183 healthcare workers who tested positive between January and August 2022. Median Cq values were lower in symptomatic than in asymptomatic HCW. The difference in Cq values between HCW with mild vs moderate/severe symptoms was statistically significant but negligibly small. To prevent nosocomial infections, all symptomatic HCW should be tested irrespective of symptom severity. This information can support decisions on testing and isolation, in the context of ongoing pressure on healthcare systems.
Asunto(s)
COVID-19 , Infección Hospitalaria , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Países Bajos/epidemiología , Personal de SaludRESUMEN
BACKGROUND: Terminal cleaning and disinfection of hospital patient rooms must be performed after discharge of a patient with a multidrug resistant micro-organism to eliminate pathogens from the environment. Terminal disinfection is often performed manually, which is prone to human errors and therefore poses an increased infection risk for the next patients. Automated whole room disinfection (WRD) replaces or adds on to the manual process of disinfection and can contribute to the quality of terminal disinfection. While the in vitro efficacy of WRD devices has been extensively investigated and reviewed, little is known about the in situ efficacy in a real-life hospital setting. In this review, we summarize available literature on the in situ efficacy of WRD devices in a hospital setting and compare findings to the in vitro efficacy of WRD devices. Moreover, we offer practical recommendations for the implementation of WRD devices. METHODS: The in situ efficacy was summarized for four commonly used types of WRD devices: aerosolized hydrogen peroxide, H2O2 vapour, ultraviolet C and pulsed xenon ultraviolet. The in situ efficacy was based on environmental and clinical outcome measures. A systematic literature search was performed in PubMed in September 2021 to identify available literature. For each disinfection system, we summarized the available devices, practical information, in vitro efficacy and in situ efficacy. RESULTS: In total, 54 articles were included. Articles reporting environmental outcomes of WRD devices had large variation in methodology, reported outcome measures, preparation of the patient room prior to environmental sampling, the location of sampling within the room and the moment of sampling. For the clinical outcome measures, all included articles reported the infection rate. Overall, these studies consistently showed that automated disinfection using any of the four types of WRD is effective in reducing environmental and clinical outcomes. CONCLUSION: Despite the large variation in the included studies, the four automated WRD systems are effective in reducing the amount of pathogens present in a hospital environment, which was also in line with conclusions from in vitro studies. Therefore, the assessment of what WRD device would be most suitable in a specific healthcare setting mostly depends on practical considerations.
Asunto(s)
Desinfección , Peróxido de Hidrógeno , Humanos , Desinfección/métodos , Peróxido de Hidrógeno/farmacología , Rayos Ultravioleta , Habitaciones de Pacientes , XenónRESUMEN
Nontuberculous mycobacteria (NTM) are highly drug-resistant, opportunistic pathogens that can cause pulmonary disease. The outcomes of the currently recommended treatment regimens are poor, especially for Mycobacterium abscessus New or repurposed drugs are direly needed. Auranofin, a gold-based antirheumatic agent, was investigated for Mycobacterium tuberculosis Here, we test auranofin against NTM in vitro and ex vivo We tested the susceptibility of 63 NTM isolates to auranofin using broth microdilution. Next, we assessed synergy between auranofin and antimycobacterial drugs using the checkerboard method and calculated the fractional inhibition concentration index (FICI). Using time-kill kinetics assays (TK), we assessed pharmacodynamics of auranofin alone and in combination with drug combinations showing the lowest FICIs for M. abscessus CIP 104536. A response surface analysis was used to assess synergistic interactions over time in TKs. Primary isolated macrophages were infected with M. abscessus and treated with auranofin. Finally, using KEGG Orthology, we looked for orthologues to auranofins drug target in M. tuberculosisM. abscessus had the lowest auranofin MIC50 (2 µg/ml) among the tested NTM. The lowest average FICIs were observed between auranofin and amikacin (0.45) and linezolid (0.50). Auranofin exhibited concentration-dependent killing of M. abscessus, with >1-log killing at concentrations of >2× MIC. Only amikacin was synergistic with auranofin according to Bliss independence. Auranofin could not lower the intracellular bacterial load in macrophages. Auranofin itself may not be feasible for M. abscessus treatment, but these data point toward a promising, unutilized drug target.