Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 220(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33886957

RESUMEN

Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13. Sorting requires either recognition of VAMP7 by the AP-3δ subunit of AP-3 or of STX13 by the pallidin subunit of BLOC-1, but not both. Consequently, melanocytes expressing both AP-3δ and pallidin variants that cannot bind their respective SNARE proteins are hypopigmented and fail to sort BLOC-1-dependent cargo, STX13, or VAMP7 into transport carriers. However, SNARE binding does not influence BLOC-1 function in generating tubular transport carriers. These data reveal a novel mechanism of vSNARE sorting by recognition of redundant sorting determinants on a SNARE complex by an AP-3-BLOC-1 super-complex.


Asunto(s)
Complejo 3 de Proteína Adaptadora/genética , Subunidades delta de Complexo de Proteína Adaptadora/genética , Proteínas del Tejido Nervioso/genética , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/genética , Endosomas/genética , Humanos , Melanocitos/metabolismo , Melanosomas/genética , Transporte de Proteínas/genética
2.
Traffic ; 20(6): 404-435, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30945407

RESUMEN

Lysosome-related organelles (LROs) comprise a diverse group of cell type-specific, membrane-bound subcellular organelles that derive at least in part from the endolysosomal system but that have unique contents, morphologies and functions to support specific physiological roles. They include: melanosomes that provide pigment to our eyes and skin; alpha and dense granules in platelets, and lytic granules in cytotoxic T cells and natural killer cells, which release effectors to regulate hemostasis and immunity; and distinct classes of lamellar bodies in lung epithelial cells and keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or secretion of subsets of LROs are dysfunctional or entirely absent in a number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak syndromes. This review provides a comprehensive overview of LROs in humans and model organisms and presents our current understanding of how the products of genes that are defective in heritable diseases impact their formation, motility and ultimate secretion.


Asunto(s)
Síndrome de Hermanski-Pudlak/metabolismo , Lisosomas/metabolismo , Melanosomas/metabolismo , Cuerpos de Weibel-Palade/metabolismo , Animales , Síndrome de Hermanski-Pudlak/patología , Humanos , Lisosomas/ultraestructura , Melanosomas/ultraestructura , Cuerpos de Weibel-Palade/ultraestructura
3.
J Invest Dermatol ; 138(3): 486-489, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29477191

RESUMEN

The mechanisms by which melanins are transferred from melanocytes and stored within keratinocytes to generate skin pigmentation are hotly debated. Correia et al. and Hurbain et al. provide evidence that melanin cores of melanosomes are secreted from melanocytes and taken up and stored within non-degradative membranous organelles in keratinocytes in the basal epidermis of human skin.


Asunto(s)
Melaninas , Células Epidérmicas , Humanos , Queratinocitos , Melanocitos , Melanosomas , Pigmentación de la Piel
4.
Science ; 358(6365)2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29025994

RESUMEN

Despite the wide range of skin pigmentation in humans, little is known about its genetic basis in global populations. Examining ethnically diverse African genomes, we identify variants in or near SLC24A5, MFSD12, DDB1, TMEM138, OCA2, and HERC2 that are significantly associated with skin pigmentation. Genetic evidence indicates that the light pigmentation variant at SLC24A5 was introduced into East Africa by gene flow from non-Africans. At all other loci, variants associated with dark pigmentation in Africans are identical by descent in South Asian and Australo-Melanesian populations. Functional analyses indicate that MFSD12 encodes a lysosomal protein that affects melanogenesis in zebrafish and mice, and that mutations in melanocyte-specific regulatory regions near DDB1/TMEM138 correlate with expression of ultraviolet response genes under selection in Eurasians.


Asunto(s)
Población Negra/genética , Evolución Molecular , Flujo Génico , Sitios Genéticos , Melaninas/genética , Pigmentación de la Piel/genética , África Oriental , Animales , Antiportadores/genética , Proteínas de Unión al ADN/genética , Etnicidad/genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Melaninas/biosíntesis , Melaninas/metabolismo , Melanocitos/metabolismo , Proteínas de la Membrana/genética , Ratones , Polimorfismo de Nucleótido Simple , Exposición a la Radiación , Supresión Genética , Rayos Ultravioleta
5.
J Biol Chem ; 291(28): 14510-25, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27226565

RESUMEN

Arrestin domain-containing protein 3 (ARRDC3) is a member of the mammalian α-arrestin family, which is predicted to share similar tertiary structure with visual-/ß-arrestins and also contains C-terminal PPXY motifs that mediate interaction with E3 ubiquitin ligases. Recently, ARRDC3 has been proposed to play a role in regulating the trafficking of G protein-coupled receptors, although mechanistic insight into this process is lacking. Here, we focused on characterizing the role of ARRDC3 in regulating the trafficking of the ß2-adrenergic receptor (ß2AR). We find that ARRDC3 primarily localizes to EEA1-positive early endosomes and directly interacts with the ß2AR in a ligand-independent manner. Although ARRDC3 has no effect on ß2AR endocytosis or degradation, it negatively regulates ß2AR entry into SNX27-occupied endosomal tubules. This results in delayed recycling of the receptor and a concomitant increase in ß2AR-dependent endosomal signaling. Thus, ARRDC3 functions as a switch to modulate the endosomal residence time and subsequent intracellular signaling of the ß2AR.


Asunto(s)
Arrestinas/fisiología , Endosomas/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal/fisiología , Células HEK293 , Humanos
6.
J Biol Chem ; 291(21): 10986-1002, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27008860

RESUMEN

The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor.


Asunto(s)
Actinas/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Nexinas de Clasificación/metabolismo , Actinas/química , Animales , Células CHO , Cricetulus , Endosomas/metabolismo , Células HEK293 , Humanos , Redes y Vías Metabólicas , Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Dominios PDZ , Unión Proteica , Subunidades de Proteína , Transporte de Proteínas , Proteolisis , Receptor de Hormona Paratiroídea Tipo 1/química , Receptor de Hormona Paratiroídea Tipo 1/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nexinas de Clasificación/química , Nexinas de Clasificación/genética
7.
Methods Cell Biol ; 130: 333-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26360044

RESUMEN

Recent advances in direct imaging have given us a new appreciation of the spatial and temporal dynamics of membrane trafficking processes, and have allowed us to ask questions that were difficult to address with traditional methods. A relevant example of this is protein sorting in the endosome, which serves as the primary sorting station for proteins internalized from the cell surface. In this chapter, we discuss fluorescence imaging protocols to directly visualize and quantitate the recycling of G protein-coupled receptors (GPCRs)-a highly physiologically relevant family of signaling receptors-in real time in living cells. The protocols allow direct visualization and quantitation of both GPCR exit from the endosome and GPCR delivery to the cell surface. The methods may be extended to study the endolysosomal sorting of many proteins that undergoes endocytic cycling, and may be adapted to other organelles and systems where proteins are sorted.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Endocitosis , Endosomas/metabolismo , Células HEK293 , Humanos , Microscopía Fluorescente , Datos de Secuencia Molecular , Señales de Clasificación de Proteína , Transporte de Proteínas , Receptores Acoplados a Proteínas G/química , Imagen de Lapso de Tiempo
8.
Prog Mol Biol Transl Sci ; 132: 189-206, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26055059

RESUMEN

The endocytic pathway tightly regulates the activity of G protein-coupled receptors (GPCRs). Much of our understanding of this relationship between GPCR endocytic trafficking and signaling comes from studies done on catecholamine and opioid receptors. After ligand-induced endocytosis, a key sorting step in the endosome determines whether receptors are recycled back to the cell surface, leading to recovery of signaling, or are degraded in the lysosome, leading to desensitization. Recycling of GPCRs, unlike that of many other proteins, is an active process driven by specific sequences on the receptor and proteins that interact with this sequence. Recent data suggest that sequence-dependent recycling plays complex roles in regulating both the timing and location of GPCR signaling. This chapter will describe our current understanding of the mechanisms regulating GPCR sorting in the endosome and discuss emerging ideas on their role in GPCR signaling, focusing on adrenergic and opioid receptors as prototypes.


Asunto(s)
Endocitosis , Receptores Adrenérgicos/metabolismo , Receptores Opioides/metabolismo , Animales , Membrana Celular/metabolismo , Citoplasma/metabolismo , Endosomas/metabolismo , Humanos , Ligandos , Lisosomas/metabolismo , Fosforilación , Transporte de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
9.
Cell Rep ; 10(11): 1925-36, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25801029

RESUMEN

How neurons coordinate and reprogram multiple neurotransmitter signals is an area of broad interest. Here, we show that substance P (SP), a neuropeptide associated with inflammatory pain, reprograms opioid receptor recycling and signaling. SP, through activation of the neurokinin 1 (NK1R) receptor, increases the post-endocytic recycling of the mu-opioid receptor (MOR) in trigeminal ganglion (TG) neurons in an agonist-selective manner. SP-mediated protein kinase C (PKC) activation is both required and sufficient for increasing recycling of exogenous and endogenous MOR in TG neurons. The target of this cross-regulation is MOR itself, given that mutation of either of two PKC phosphorylation sites on MOR abolishes the SP-induced increase in recycling and resensitization. Furthermore, SP enhances the resensitization of fentanyl-induced, but not morphine-induced, antinociception in mice. Our results define a physiological pathway that cross-regulates opioid receptor recycling via direct modification of MOR and suggest a mode of homeostatic interaction between the pain and analgesic systems.


Asunto(s)
Neuronas/metabolismo , Receptores Opioides mu/metabolismo , Sustancia P/farmacología , Analgésicos Opioides/farmacología , Animales , Células Cultivadas , Endocitosis , Fentanilo/farmacología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/farmacología , Neuronas/efectos de los fármacos , Nocicepción , Proteína Quinasa C/metabolismo , Transporte de Proteínas , Ratas , Receptores de Neuroquinina-1/metabolismo , Ganglio del Trigémino/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...