Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Addict Med ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752709

RESUMEN

ABSTRACT: The American Society of Addiction Medicine (ASAM) has published clinical practice guidelines (CPGs) since 2015. As ASAM's CPG work continues to develop, it maintains an organizational priority to establish rigorous standards for the trustworthy production of these important documents. In keeping with ASAM's mission to define and promote evidence-based best practices in addiction prevention, treatment, and recovery, ASAM has rigorously updated its CPG methodology to be in line with evolving international standards. The CPG Methodology and Oversight Subcommittee was formed to establish and publish a methodology for the development of ASAM CPGs and to develop an ASAM CPG strategic plan. This article provides a focused overview of the ASAM CPG methodology.

2.
N Engl J Med ; 370(13): 1209-1219, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24670167

RESUMEN

BACKGROUND: Autism involves early brain overgrowth and dysfunction, which is most strongly evident in the prefrontal cortex. As assessed on pathological analysis, an excess of neurons in the prefrontal cortex among children with autism signals a disturbance in prenatal development and may be concomitant with abnormal cell type and laminar development. METHODS: To systematically examine neocortical architecture during the early years after the onset of autism, we used RNA in situ hybridization with a panel of layer- and cell-type-specific molecular markers to phenotype cortical microstructure. We assayed markers for neurons and glia, along with genes that have been implicated in the risk of autism, in prefrontal, temporal, and occipital neocortical tissue from postmortem samples obtained from children with autism and unaffected children between the ages of 2 and 15 years. RESULTS: We observed focal patches of abnormal laminar cytoarchitecture and cortical disorganization of neurons, but not glia, in prefrontal and temporal cortical tissue from 10 of 11 children with autism and from 1 of 11 unaffected children. We observed heterogeneity between cases with respect to cell types that were most abnormal in the patches and the layers that were most affected by the pathological features. No cortical layer was uniformly spared, with the clearest signs of abnormal expression in layers 4 and 5. Three-dimensional reconstruction of layer markers confirmed the focal geometry and size of patches. CONCLUSIONS: In this small, explorative study, we found focal disruption of cortical laminar architecture in the cortexes of a majority of young children with autism. Our data support a probable dysregulation of layer formation and layer-specific neuronal differentiation at prenatal developmental stages. (Funded by the Simons Foundation and others.).


Asunto(s)
Trastorno Autístico/patología , Neocórtex/ultraestructura , Adolescente , Trastorno Autístico/genética , Biomarcadores/análisis , Biomarcadores/metabolismo , Calbindina 1/genética , Recuento de Células , Niño , Preescolar , Crioultramicrotomía , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/genética , Expresión Génica , Humanos , Imagenología Tridimensional , Hibridación in Situ , Neocórtex/crecimiento & desarrollo , Proteínas del Tejido Nervioso/genética , Proteínas de Neurofilamentos/genética , Neurogénesis , Neuronas/patología , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , ARN/genética
3.
J Comp Neurol ; 519(11): 2061-89, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21491433

RESUMEN

The disrupted cortical lamination phenotype in reeler mice and subsequent identification of the Reelin signaling pathway have strongly informed models of cortical development. We describe here a marker-based phenotyping approach to reexamine the cytoarchitectural consequences of Reelin deficiency, using high-throughput histology and newly identified panels of highly specific molecular markers. The resulting cell-type-level cytoarchitectural analysis revealed novel features of abnormal patterning in the male reeler mouse not obvious with less specific markers or histology. The reeler cortex has been described as a rough laminar inversion, but the data presented here are not compatible with this model. The reeler cortex is disrupted in a more complex fashion, with some regions showing a mirror-image laminar phenotype. Major rostrocaudal and cell-type-specific differences in the laminar phenotype between cortical areas are detailed. These and similar findings in hippocampus and amygdala have implications for mechanisms of normal brain development and abnormalities in neurodevelopmental disorders.


Asunto(s)
Amígdala del Cerebelo/citología , Moléculas de Adhesión Celular Neuronal/deficiencia , Proteínas de la Matriz Extracelular/deficiencia , Hipocampo/citología , Neocórtex/citología , Proteínas del Tejido Nervioso/deficiencia , Serina Endopeptidasas/deficiencia , Amígdala del Cerebelo/anomalías , Amígdala del Cerebelo/crecimiento & desarrollo , Amígdala del Cerebelo/metabolismo , Animales , Biomarcadores/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Proteínas de la Matriz Extracelular/genética , Hipocampo/anomalías , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Hibridación in Situ , Masculino , Ratones , Ratones Mutantes Neurológicos , Neocórtex/anomalías , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/genética , Fenotipo , Proteína Reelina , Serina Endopeptidasas/genética , Transducción de Señal/fisiología
4.
Nature ; 470(7333): 221-6, 2011 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21307935

RESUMEN

Electrical stimulation of certain hypothalamic regions in cats and rodents can elicit attack behaviour, but the exact location of relevant cells within these regions, their requirement for naturally occurring aggression and their relationship to mating circuits have not been clear. Genetic methods for neural circuit manipulation in mice provide a potentially powerful approach to this problem, but brain-stimulation-evoked aggression has never been demonstrated in this species. Here we show that optogenetic, but not electrical, stimulation of neurons in the ventromedial hypothalamus, ventrolateral subdivision (VMHvl) causes male mice to attack both females and inanimate objects, as well as males. Pharmacogenetic silencing of VMHvl reversibly inhibits inter-male aggression. Immediate early gene analysis and single unit recordings from VMHvl during social interactions reveal overlapping but distinct neuronal subpopulations involved in fighting and mating. Neurons activated during attack are inhibited during mating, suggesting a potential neural substrate for competition between these opponent social behaviours.


Asunto(s)
Agresión/fisiología , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Estimulación Eléctrica , Electrofisiología , Femenino , Regulación de la Expresión Génica , Genes fos/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Inhibición Neural/genética , Inhibición Neural/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Conducta Sexual Animal/fisiología , Núcleo Hipotalámico Ventromedial/anatomía & histología , Núcleo Hipotalámico Ventromedial/metabolismo
5.
Mol Cell Endocrinol ; 336(1-2): 2-5, 2011 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-21094675

RESUMEN

Genetic modulation of glucocorticoid receptor (GR) function in the brain using transgenic and gene knockout mice has yielded important insights into many aspects of GR effects on behavior and neuroendocrine responses, but significant limitations regarding interpretation of region-specific and temporal requirements remain. Here, we summarize the behavioral phenotype associated with two knockout mouse models to define the role of GRs specifically within the forebrain and amygdala. We report that forebrain-specific GR knockout mice exhibit impaired negative feedback regulation of the hypothalamic-pituitary-adrenal (HPA) axis and increased despair- and anxiety-like behaviors. In addition, mice with a disruption of GR specifically within the central nucleus of the amygdala (CeA) are deficient in conditioned fear behavior. Overall, these models serve as beneficial tools to better understand the biology of GR signaling in the normal stress response and in mood disorders.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Eliminación de Gen , Modelos Animales , Receptores de Glucocorticoides/genética , Animales , Conducta Animal , Ratones , Especificidad de Órganos
6.
J Neurosci ; 30(7): 2571-81, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20164342

RESUMEN

During development, early-life stress, such as abuse or trauma, induces long-lasting changes that are linked to adult anxiety and depressive behavior. It has been postulated that altered expression of corticotropin-releasing hormone (CRH) can at least partially account for the various effects of stress on behavior. In accord with this hypothesis, evidence from pharmacological and genetic studies has indicated the capacity of differing levels of CRH activity in different brain areas to produce behavioral changes. Furthermore, stress during early life or adulthood causes an increase in CRH release in a variety of neural sites. To evaluate the temporal and spatial specificity of the effect of early-life CRH exposure on adult behavior, the tetracycline-off system was used to produce mice with forebrain-restricted inducible expression of CRH. After transient elevation of CRH during development only, behavioral testing in adult mice revealed a persistent anxiogenic and despair-like phenotype. These behavioral changes were not associated with alterations in adult circadian or stress-induced corticosterone release but were associated with changes in CRH receptor type 1 expression. Furthermore, the despair-like changes were normalized with antidepressant treatment. Overall, these studies suggest that forebrain-restricted CRH signaling during development can permanently alter stress adaptation leading to increases in maladaptive behavior in adulthood.


Asunto(s)
Ansiedad/etiología , Hormona Liberadora de Corticotropina/metabolismo , Depresión/etiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Prosencéfalo/metabolismo , Adaptación Ocular/efectos de los fármacos , Adaptación Ocular/genética , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Ansiedad/tratamiento farmacológico , Ansiedad/genética , Conducta Animal/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Hormona Liberadora de Corticotropina/genética , Depresión/tratamiento farmacológico , Depresión/genética , Modelos Animales de Enfermedad , Doxiciclina/administración & dosificación , Embrión de Mamíferos , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Hormona del Crecimiento/metabolismo , Suspensión Trasera/métodos , Sistema Hipotálamo-Hipofisario/crecimiento & desarrollo , Sistema Hipotálamo-Hipofisario/metabolismo , Imipramina/farmacología , Imipramina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Sistema Hipófiso-Suprarrenal/crecimiento & desarrollo , Sistema Hipófiso-Suprarrenal/metabolismo , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Radioinmunoensayo/métodos , Tiempo de Reacción/genética , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo
7.
Cell ; 137(7): 1225-34, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19563755

RESUMEN

Neurons in the arcuate nucleus that produce AgRP, NPY, and GABA (AgRP neurons) promote feeding. Ablation of AgRP neurons in adult mice results in Fos activation in postsynaptic neurons and starvation. Loss of GABA is implicated in starvation because chronic subcutaneous delivery of bretazenil (a GABA(A) receptor partial agonist) suppresses Fos activation and maintains feeding during ablation of AgRP neurons. Moreover, under these conditions, direct delivery of bretazenil into the parabrachial nucleus (PBN), a direct target of AgRP neurons that also relays gustatory and visceral sensory information, is sufficient to maintain feeding. Conversely, inactivation of GABA biosynthesis in the ARC or blockade of GABA(A) receptors in the PBN of mice promote anorexia. We suggest that activation of the PBN by AgRP neuron ablation or gastrointestinal malaise inhibits feeding. Chronic delivery of bretazenil during loss of AgRP neurons provides time to establish compensatory mechanisms that eventually allow mice to eat.


Asunto(s)
Anorexia/fisiopatología , Neuronas/metabolismo , Rombencéfalo/metabolismo , Transducción de Señal , Inanición/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Astrocitos/metabolismo , Agonistas de Receptores de GABA-A , Glutamato Descarboxilasa , Ratones , Proteínas Proto-Oncogénicas c-fos/metabolismo
8.
J Neurosci ; 26(7): 1971-8, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16481429

RESUMEN

Stress potently modulates anxiety- and depression-related behaviors. In response to stressors, the hypothalamic-pituitary-adrenal (HPA) axis is activated, resulting in the release of glucocorticoids from the adrenal cortex. These hormones act peripherally to restore homeostasis but also feed back to the CNS to control the intensity and duration of the stress response. Glucocorticoids act in limbic areas of the CNS to mediate the psychological and behavioral effects of stress. In this study, we investigate the effect of forebrain-specific disruption of the glucocorticoid receptor (GR) on stress- and anxiety-related behaviors. We demonstrate that mice with disruption of forebrain GR show alterations in stress-induced locomotor activation in a number of anxiety-related behavioral paradigms. These changes are associated with alterations in stress-induced HPA axis activation and, importantly, are not attenuated by chronic treatment with the tricyclic antidepressant imipramine. These data demonstrate the importance of forebrain GR in regulation of physiological and behavioral stress reactivity and suggest that distinct pathways regulate despair- and anxiety-related behaviors.


Asunto(s)
Ansiedad , Actividad Motora/fisiología , Prosencéfalo/fisiología , Receptores de Glucocorticoides/fisiología , Glándulas Suprarrenales/fisiología , Animales , Oscuridad , Sistema Hipotálamo-Hipofisario/fisiología , Integrasas/genética , Integrasas/metabolismo , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Ratones Transgénicos , Modelos Animales , Estrés Psicológico
9.
J Cell Biol ; 169(4): 623-33, 2005 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-15897264

RESUMEN

The RGS7 (R7) family of RGS proteins bound to the divergent Gbeta subunit Gbeta5 is a crucial regulator of G protein-coupled receptor (GPCR) signaling in the visual and nervous systems. Here, we identify R7BP, a novel neuronally expressed protein that binds R7-Gbeta5 complexes and shuttles them between the plasma membrane and nucleus. Regional expression of R7BP, Gbeta5, and R7 isoforms in brain is highly coincident. R7BP is palmitoylated near its COOH terminus, which targets the protein to the plasma membrane. Depalmitoylation of R7BP translocates R7BP-R7-Gbeta5 complexes from the plasma membrane to the nucleus. Compared with nonpalmitoylated R7BP, palmitoylated R7BP greatly augments the ability of RGS7 to attenuate GPCR-mediated G protein-regulated inward rectifying potassium channel activation. Thus, by controlling plasma membrane nuclear-shuttling of R7BP-R7-Gbeta5 complexes, reversible palmitoylation of R7BP provides a novel mechanism that regulates GPCR signaling and potentially transduces signals directly from the plasma membrane to the nucleus.


Asunto(s)
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas RGS/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Línea Celular , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Ratones , Ácido Palmítico/metabolismo , Canales de Potasio/metabolismo , Proteínas RGS/genética , Proteínas RGS/aislamiento & purificación , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología
10.
Proc Natl Acad Sci U S A ; 102(2): 473-8, 2005 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-15623560

RESUMEN

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a hallmark of major depressive disorder. A number of studies have shown that this dysregulation is correlated with impaired forebrain glucocorticoid receptor (GR) function. To determine whether a primary, acquired deficit in forebrain GR signaling is an etiologic factor in the pathogenesis of depression, we generated a line of mice with time-dependent, forebrain-specific disruption of GR (FBGRKO). These mice develop a number of both physiological and behavioral abnormalities that mimic major depressive disorder in humans, including hyperactivity of the HPA axis, impaired negative feedback regulation of the HPA axis and, increased depression-like behavior. Importantly, a number of these abnormalities are normalized by chronic treatment with the tricyclic antidepressant, imipramine. Our findings suggest that imipramine's proposed activities on forebrain GR function are not essential for its antidepressant effects, and that alteration in GR expression may play a causative role in disease onset of major depressive disorder.


Asunto(s)
Depresión/etiología , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Prosencéfalo/fisiología , Receptores de Glucocorticoides/fisiología , Animales , Hormona Liberadora de Corticotropina/genética , Depresión/tratamiento farmacológico , Hipocampo/fisiología , Imipramina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , ARN Mensajero/análisis , Receptores de Glucocorticoides/deficiencia , Factores de Tiempo
11.
Neurobiol Dis ; 17(3): 403-14, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15571976

RESUMEN

Administration of ethanol to rodents during the synaptogenesis period induces extensive apoptotic neurodegeneration in the developing brain. This neurotoxicity may explain the reduced brain mass and neurobehavioral disturbances in human Fetal Alcohol Syndrome (FAS). Here, we report binge-like exposure of infant mice to ethanol on a single postnatal day triggered apoptotic death of neurons from diencephalic structures that comprise an extended hippocampal circuit important for spatial learning and memory. The ethanol exposure paradigm yielding these neuronal losses caused profound impairments in spatial learning and memory at 1 month of age. This impairment was significantly attenuated during subsequent development, indicating recovery of function. Recovery was not associated with increased neurogenesis, suggesting plastic reorganization of neuronal networks compensated for early neuronal losses. We hypothesize that neuroapoptotic damage in homologous regions of human brain underlies cognitive deficits in FAS and the human brain of FAS victims has a similar capacity to effect functional recovery.


Asunto(s)
Apoptosis/fisiología , Etanol/toxicidad , Hipocampo/patología , Degeneración Nerviosa/patología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Bromodesoxiuridina , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Femenino , Trastornos del Espectro Alcohólico Fetal , Hipocampo/efectos de los fármacos , Humanos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Degeneración Nerviosa/inducido químicamente , Postura , Embarazo , Caracteres Sexuales
12.
Endocr Res ; 30(4): 859-63, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15666837

RESUMEN

A number of lines of evidence suggest that alterations in forebrain glucocorticoid receptor (GR)-mediated regulation of the hypothalamic-pituitary-adrenal (HPA) axis may be involved in the etiology of depression. The level of expression of GR in the hippocampus is highly correlated with HPA axis activity, and a number of animal models of depression are associated with altered forebrain GR expression. We have generated a line of mice with a conditional, forebrain-specific deletion of GR (FBGRKO) to determine if a primary deficit in forebrain GR signaling is an etiologic factor in the pathogenesis of depression. These mice should prove to be valuable for identifying GR target genes in major depressive disorder (MDD) and testing pharmacological agents for efficacy in this disorder.


Asunto(s)
Depresión/etiología , Prosencéfalo/metabolismo , Receptores de Glucocorticoides/deficiencia , Transducción de Señal , Estrés Fisiológico/etiología , Animales , Ratones , Ratones Endogámicos , Ratones Noqueados , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA