Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Nat Immunol ; 25(4): 587-589, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589620
2.
Immune Netw ; 24(1): e5, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38455463

RESUMEN

The key role of T cells in cancer immunotherapy is well established and is highlighted by the remarkable capacity of Ab-mediated checkpoint blockade to overcome T-cell exhaustion and amplify anti-tumor responses. However, total or partial tumor remission following checkpoint blockade is still limited to only a few types of tumors. Hence, concerted attempts are being made to devise new methods for improving tumor immunity. Currently, much attention is being focused on therapy with IL-2. This cytokine is a powerful growth factor for T cells and optimises their effector functions. When used at therapeutic doses for cancer treatment, however, IL-2 is highly toxic. Nevertheless, recent work has shown that modifying the structure or presentation of IL-2 can reduce toxicity and lead to effective anti-tumor responses in synergy with checkpoint blockade. Here, we review the complex interaction of IL-2 with T cells: first during normal homeostasis, then during responses to pathogens, and finally in anti-tumor responses.

3.
Science ; 383(6680): eadg7942, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38236961

RESUMEN

Long Covid is a debilitating condition of unknown etiology. We performed multimodal proteomics analyses of blood serum from COVID-19 patients followed up to 12 months after confirmed severe acute respiratory syndrome coronavirus 2 infection. Analysis of >6500 proteins in 268 longitudinal samples revealed dysregulated activation of the complement system, an innate immune protection and homeostasis mechanism, in individuals experiencing Long Covid. Thus, active Long Covid was characterized by terminal complement system dysregulation and ongoing activation of the alternative and classical complement pathways, the latter associated with increased antibody titers against several herpesviruses possibly stimulating this pathway. Moreover, markers of hemolysis, tissue injury, platelet activation, and monocyte-platelet aggregates were increased in Long Covid. Machine learning confirmed complement and thromboinflammatory proteins as top biomarkers, warranting diagnostic and therapeutic interrogation of these systems.


Asunto(s)
Activación de Complemento , Proteínas del Sistema Complemento , Síndrome Post Agudo de COVID-19 , Proteoma , Tromboinflamación , Humanos , Proteínas del Sistema Complemento/análisis , Proteínas del Sistema Complemento/metabolismo , Síndrome Post Agudo de COVID-19/sangre , Síndrome Post Agudo de COVID-19/complicaciones , Síndrome Post Agudo de COVID-19/inmunología , Tromboinflamación/sangre , Tromboinflamación/inmunología , Biomarcadores/sangre , Proteómica , Masculino , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano
5.
Cancer Immunol Res ; 11(10): 1432-1444, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37478172

RESUMEN

The transcription factor c-Myb is overexpressed in many different types of solid tumors, including colorectal cancer. However, its exact role in tumorigenesis is unclear. In this study, we show that tumor-intrinsic c-Myb expression in mouse models of colon cancer and melanoma suppresses tumor growth. Although no differences in proliferation, apoptosis, and angiogenesis of tumors were evident in tumors with distinct levels of c-Myb expression, we observed changes in intratumoral immune cell infiltrates. MC38 tumors with upregulated c-Myb expression showed increased numbers of CD103+ dendritic cells and eosinophils, but decreased tumor-associated macrophages (TAM). Concomitantly, an increase in the number of activated cytotoxic CD8+ T cells upon c-Myb upregulation was observed, which correlated with a pro-inflammatory tumor microenvironment and increased numbers of M1 polarized TAMs. Mechanistically, c-Myb upregulation in immunogenic MC38 colon cancer cells resulted in enhanced expression of immunomodulatory genes, including those encoding ß2-microglobulin and IFNß, and decreased expression of the gene encoding the chemokine receptor CCR2. The increased numbers of activated cytotoxic CD8+ T cells contributed to tumor growth attenuation. In poorly immunogenic CT26, LLC, and B16-BL6 tumor cells, c-Myb upregulation did not affect the immunomodulatory gene expression. Despite this, c-Myb upregulation led to reduced B16-BL6 tumor growth but it did not affect tumor growth of CT26 and LLC tumors. Altogether, we postulate that c-Myb functions as a tumor suppressor in a tumor cell-type specific manner and modulates antitumor immunity.

6.
Nat Immunol ; 24(6): 955-965, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37106039

RESUMEN

The B cell response to different pathogens uses tailored effector mechanisms and results in functionally specialized memory B (Bm) cell subsets, including CD21+ resting, CD21-CD27+ activated and CD21-CD27- Bm cells. The interrelatedness between these Bm cell subsets remains unknown. Here we showed that single severe acute respiratory syndrome coronavirus 2-specific Bm cell clones showed plasticity upon antigen rechallenge in previously exposed individuals. CD21- Bm cells were the predominant subsets during acute infection and early after severe acute respiratory syndrome coronavirus 2-specific immunization. At months 6 and 12 post-infection, CD21+ resting Bm cells were the major Bm cell subset in the circulation and were also detected in peripheral lymphoid organs, where they carried tissue residency markers. Tracking of individual B cell clones by B cell receptor sequencing revealed that previously fated Bm cell clones could redifferentiate upon antigen rechallenge into other Bm cell subsets, including CD21-CD27- Bm cells, demonstrating that single Bm cell clones can adopt functionally different trajectories.


Asunto(s)
Subgrupos de Linfocitos B , COVID-19 , Humanos , SARS-CoV-2 , Células B de Memoria , Linfocitos B
7.
EBioMedicine ; 90: 104539, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37004361

RESUMEN

BACKGROUND: The cytokine interleukin-2 (IL-2) can stimulate both effector immune cells and regulatory T (Treg) cells. The ability of selectively engaging either of these effects has spurred interest in using IL-2 for immunotherapy of cancer and autoimmune diseases. Thus, numerous IL-2-based biologic agents with improved bias or delivery towards effector immune cells or Treg cells have been developed. This study systematically reviews clinical results of improved IL-2-based compounds. METHODS: We searched the ClinicalTrials.gov database for registered trials using improved IL-2-based agents and different databases for available results of these studies. FINDINGS: From 576 registered clinical trials we extracted 36 studies on different improved IL-2-based compounds. Adding another nine agents reported in recent literature reviews and based on our knowledge totalled in 45 compounds. A secondary search for registered clinical trials of each of these 45 compounds resulted in 141 clinical trials included in this review, with 41 trials reporting results. INTERPRETATION: So far, none of the improved IL-2-based compounds has gained regulatory approval for the treatment of cancer or autoimmune diseases. NKTR-214 is the only compound completing phase 3 studies. The PIVOT IO-001 trial testing the combination of NKTR-214 plus Pembrolizumab compared to Pembrolizumab monotherapy in metastatic melanoma missed its primary endpoints. Also the PIVOT-09 study, combining NKTR-214 with Nivolumab compared to Sunitinib or Cabozantinib in advanced renal cell carcinoma, missed its primary endpoint. Trials in autoimmune diseases are currently in early stages, thus not allowing definite conclusions on efficacy. FUNDING: This work was supported by public funding agencies.


Asunto(s)
Antineoplásicos , Enfermedades Autoinmunes , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Antineoplásicos/uso terapéutico , Interleucina-2/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/patología , Inmunoterapia/métodos , Enfermedades Autoinmunes/tratamiento farmacológico
8.
Nat Immunol ; 24(4): 604-611, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36879067

RESUMEN

Infection with severe acute respiratory syndrome coronavirus 2 associates with diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse coronavirus disease 2019 (COVID-19) outcomes. Here we discovered that antibodies against specific chemokines were omnipresent post-COVID-19, were associated with favorable disease outcome and negatively correlated with the development of long COVID at 1 yr post-infection. Chemokine antibodies were also present in HIV-1 infection and autoimmune disorders, but they targeted different chemokines compared with COVID-19. Monoclonal antibodies derived from COVID-19 convalescents that bound to the chemokine N-loop impaired cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising chemokine antibodies may modulate the inflammatory response and thus bear therapeutic potential.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Autoanticuerpos , Síndrome Post Agudo de COVID-19 , Quimiocinas
9.
Nat Commun ; 14(1): 1383, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914624

RESUMEN

Transplantation of solid organs can be life-saving in patients with end-stage organ failure, however, graft rejection remains a major challenge. In this study, by pre-conditioning with interleukin-2 (IL-2)/anti-IL-2 antibody complex treatment biased toward IL-2 receptor α, we achieved acceptance of fully mismatched orthotopic lung allografts that remained morphologically and functionally intact for more than 90 days in immunocompetent mice. These allografts are tolerated by the actions of forkhead box p3 (Foxp3)+ regulatory T (Treg) cells that home to the lung allografts. Although counts of circulating Treg cells rapidly return to baseline following cessation of IL-2 treatment, Foxp3+ Treg cells persist in peribronchial and peribronchiolar areas of the grafted lungs, forming organized clusters reminiscent of inducible tertiary lymphoid structures (iTLS). These iTLS in lung allografts are made of Foxp3+ Treg cells, conventional T cells, and B cells, as evidenced by using microscopy-based distribution and neighborhood analyses. Foxp3-transgenic mice with inducible and selective deletion of Foxp3+ cells are unable to form iTLS in lung allografts, and these mice acutely reject lung allografts. Collectively, we report that short-term, high-intensity and biased IL-2 pre-conditioning facilitates acceptance of vascularized and ventilated lung allografts without the need of immunosuppression, by inducing Foxp3-controlled iTLS formation within allografts.


Asunto(s)
Supervivencia de Injerto , Interleucina-2 , Ratones , Animales , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pulmón , Rechazo de Injerto , Linfocitos T Reguladores , Ratones Transgénicos , Aloinjertos , Factores de Transcripción Forkhead
10.
J Immunother Cancer ; 11(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36822670

RESUMEN

BACKGROUND: Roughly half of all diffuse large B-cell lymphomas (DLBCLs) are infiltrated by large numbers of regulatory T-cells (Tregs). Although the presence of 'effector' Tregs in particular is associated with an inferior prognosis in patients on standard rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) immunochemotherapy, the role of this cell type during lymphoma initiation and progression is poorly understood. METHODS: Here, we use tissue microarrays containing prospectively collected DLBCL patient specimens, as well as data from publicly available cohorts to explore the mutational landscape of Treg-infiltrated DLBCL. We further take advantage of a model of MYC-driven lymphoma to mechanistically dissect the contribution of Tregs to lymphoma pathogenesis and to develop a strategy of Treg-selective interleukin-2 (IL-2) starvation to improve immune control of MYC-driven lymphoma. RESULTS: We find that all genetic DLBCL subtypes, except for one characterized by co-occurring MYD88/CD79 mutations, are heavily infiltrated by Tregs. Spectral flow cytometry and scRNA-sequencing reveal the robust expression of functional and immunosuppressive markers on Tregs infiltrating MYC-driven lymphomas; notably, we find that intratumoral Tregs arise due to local conversion from naïve CD4+ precursors on tumor contact. Treg ablation in Foxp3iDTR mice, or by antibody-mediated Treg-selective blockade of IL-2 signaling, strongly reduces the lymphoma burden. We identify lymphoma B-cells as a major source of IL-2, and show that the effects of Treg depletion are reversed by the simultaneous depletion of Foxp3-negative CD4+ T-cells, but not CD8+ T-cells or natural killer (NK) cells. The inhibition of ATP hydrolyzation and adenosine production by Tregs at least partly phenocopies the effects of Treg depletion. Treg depletion further synergizes with pro-apoptotic CD40 activation to sustain durable responses. CONCLUSION: The combined data implicate Tregs as a potential therapeutic target in DLBCL, especially in combination with other immunotherapies.


Asunto(s)
Linfoma de Células B Grandes Difuso , Linfocitos T Reguladores , Animales , Ratones , Interleucina-2/uso terapéutico , Rituximab/farmacología , Rituximab/uso terapéutico , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Vincristina/metabolismo , Vincristina/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Prednisona/uso terapéutico , Doxorrubicina/metabolismo , Doxorrubicina/uso terapéutico , Factores de Transcripción Forkhead/metabolismo
11.
iScience ; 26(2): 105928, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36619367

RESUMEN

Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). We found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19. Crucially, we found no evidence of a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2-infected subjects represents a resource for the study of chronic and possibly unexpected sequelae.

12.
Allergy ; 78(4): 1073-1087, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36334079

RESUMEN

BACKGROUND: Insight into the pathomechanism of atopic diseases demonstrated a pivotal role of the cytokines interleukin-4 (IL-4) and IL-13, which has spurred the development of tailored therapeutics targeting their common IL-4 receptor (IL-4R). However, several aspects of the IL-4R system remain ill-defined in humans. METHODS: We used multicolor spectral flow cytometry to characterize IL-4R subunit expression in 28 human immune cell subsets on protein and mRNA levels and assessed their subcellular distribution by applying a specifically adapted protocol that avoided influence of fixation and permeabilization on fluorochrome and antibody performance. In patients, we investigated possible changes in IL-4Rα distribution before and during treatment with dupilumab, a monoclonal antibody-targeting IL-4Rα. RESULTS: Whereas all immune cell subsets investigated expressed IL-4Rα and common γ chain protein and mRNA, expression of IL-13Rα1 was restricted to myeloid and B cells. Interestingly, some cells contained considerably more intracellular IL-4R protein than on their surface. Naive B cells were found to carry the highest levels of IL-4Rα distributed evenly between surface and intracellular space, whereas IL-4Rα was found predominantly in intracellular pools in neutrophils. In patients with atopic diseases treated with dupilumab, we observed that engagement of IL-4Rα by dupilumab resulted in internalization of the antibody and decreased total IL-4Rα expression. Notably, even after months of treatment not all intracellular IL-4Rα molecules were occupied by dupilumab, indicating the presence of a "dormant" intracellular IL-4Rα pool that could be mobilized upon certain extrinsic or intrinsic cues. CONCLUSION: Collectively, our findings suggest that distinct human immune cell subsets contain surface and intracellular IL-4R pools, which are differently affected by targeted biologic treatment.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Receptores de Interleucina-4 , Humanos , Receptores de Interleucina-4/metabolismo , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Linfocitos B/metabolismo , ARN Mensajero/análisis
13.
Nat Med ; 29(1): 236-246, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36482101

RESUMEN

Post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are debilitating, clinically heterogeneous and of unknown molecular etiology. A transcriptome-wide investigation was performed in 165 acutely infected hospitalized individuals who were followed clinically into the post-acute period. Distinct gene expression signatures of post-acute sequelae were already present in whole blood during acute infection, with innate and adaptive immune cells implicated in different symptoms. Two clusters of sequelae exhibited divergent plasma-cell-associated gene expression patterns. In one cluster, sequelae associated with higher expression of immunoglobulin-related genes in an anti-spike antibody titer-dependent manner. In the other, sequelae associated independently of these titers with lower expression of immunoglobulin-related genes, indicating lower non-specific antibody production in individuals with these sequelae. This relationship between lower total immunoglobulins and sequelae was validated in an external cohort. Altogether, multiple etiologies of post-acute sequelae were already detectable during SARS-CoV-2 infection, directly linking these sequelae with the acute host response to the virus and providing early insights into their development.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Anticuerpos Antivirales
14.
Sci Transl Med ; 14(670): eabo5409, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36350987

RESUMEN

Molecular insights into the mechanism of beneficial and adverse effects of interleukin-2 (IL-2) have resulted in the development of improved IL-2 formulations with IL-2 receptor bias and tissue-targeting properties. Several of these compounds are currently in clinical development and are ushering IL-2 therapy into the current era of cancer immunotherapy.


Asunto(s)
Interleucina-2 , Neoplasias , Humanos , Interleucina-2/uso terapéutico , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico
15.
Allergy ; 77(12): 3567-3583, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36067034

RESUMEN

Neutrophil granulocytes, or neutrophils, are the most abundant circulating leukocytes in humans and indispensable for antimicrobial immunity, as exemplified in patients with inborn and acquired defects of neutrophils. Neutrophils were long regarded as the foot soldiers of the immune system, solely destined to execute a set of effector functions against invading pathogens before undergoing apoptosis, the latter of which was ascribed to their short life span. This simplistic understanding of neutrophils has now been revised on the basis of insights gained from the use of mouse models and single-cell high-throughput techniques, revealing tissue- and context-specific roles of neutrophils in guiding immune responses. These studies also demonstrated that neutrophil responses were controlled by sophisticated feedback mechanisms, including directed chemotaxis of neutrophils to tissue-draining lymph nodes resulting in modulation of antimicrobial immunity and inflammation. Moreover, findings in mice and humans showed that neutrophil responses adapted to different deterministic cytokine signals, which controlled their migration and effector function as well as, notably, their biologic clock by affecting the kinetics of their aging. These mechanistic insights have important implications for health and disease in humans, particularly, in allergic diseases, such as atopic dermatitis and allergic asthma bronchiale, as well as in autoinflammatory and autoimmune diseases. Hence, our improved understanding of neutrophils sheds light on novel therapeutic avenues, focusing on molecularly defined biologic agents.


Asunto(s)
Antiinfecciosos , Enfermedades Autoinmunes , Hipersensibilidad , Humanos , Ratones , Animales , Neutrófilos , Autoinmunidad , Hipersensibilidad/patología , Inflamación
16.
Front Immunol ; 13: 888392, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874710

RESUMEN

Background: The cytokine interleukin (IL)-1 plays a pivotal role in immune-mediated disorders, particularly in autoinflammatory diseases. Targeting this cytokine proved to be efficacious in treating numerous IL-1-mediated pathologies. Currently, three IL-1 blockers are approved, namely anakinra, canakinumab and rilonacept, and two additional ones are expected to receive approval, namely gevokizumab and bermekimab. However, there is no systematic review on the safety and efficacy of these biologics in treating immune-mediated diseases. Objective: To evaluate safety and efficacy of anakinra, canakinumab, rilonacept, gevokizumab, and bermekimab for the treatment of immune-mediated disorders compared to placebo, standard-of-care treatment or other biologics. Methods: The PRISMA checklist guided the reporting of the data. We searched the PubMed database between 1 January 1984 and 31 December 2020 focusing on immune-mediated disorders. Our PubMed literature search identified 7363 articles. After screening titles and abstracts for the inclusion and exclusion criteria and assessing full texts, 75 articles were included in a narrative synthesis. Results: Anakinra was both efficacious and safe in treating cryopyrin-associated periodic syndromes (CAPS), familial Mediterranean fever (FMF), gout, macrophage activation syndrome, recurrent pericarditis, rheumatoid arthritis (RA), and systemic juvenile idiopathic arthritis (sJIA). Conversely, anakinra failed to show efficacy in graft-versus-host disease, Sjögren's syndrome, and type 1 diabetes mellitus (T1DM). Canakinumab showed efficacy in treating CAPS, FMF, gout, hyper-IgD syndrome, RA, Schnitzler's syndrome, sJIA, and TNF receptor-associated periodic syndrome. However, use of canakinumab in the treatment of adult-onset Still's disease and T1DM revealed negative results. Rilonacept was efficacious and safe for the treatment of CAPS, FMF, recurrent pericarditis, and sJIA. Contrarily, Rilonacept did not reach superiority compared to placebo in the treatment of T1DM. Gevokizumab showed mixed results in treating Behçet's disease-associated uveitis and no benefit when assessed in T1DM. Bermekimab achieved promising results in the treatment of hidradenitis suppurativa. Conclusions: This systematic review of IL-1-targeting biologics summarizes the current state of research, safety, and clinical efficacy of anakinra, bermekimab, canakinumab, gevokizumab, and rilonacept in treating immune-mediated disorders. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42021228547.


Asunto(s)
Artritis Juvenil , Artritis Reumatoide , Productos Biológicos , Síndromes Periódicos Asociados a Criopirina , Diabetes Mellitus Tipo 1 , Fiebre Mediterránea Familiar , Gota , Enfermedades del Sistema Inmune , Pericarditis , Artritis Juvenil/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Productos Biológicos/uso terapéutico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Fiebre Mediterránea Familiar/tratamiento farmacológico , Gota/tratamiento farmacológico , Humanos , Enfermedades del Sistema Inmune/tratamiento farmacológico , Proteína Antagonista del Receptor de Interleucina 1/efectos adversos , Interleucina-1/uso terapéutico , Pericarditis/tratamiento farmacológico
17.
Allergy ; 77(12): 3648-3662, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35869837

RESUMEN

BACKGROUND: Although avian coronavirus infectious bronchitis virus (IBV) and SARS-CoV-2 belong to different genera of the Coronaviridae family, exposure to IBV may result in the development of cross-reactive antibodies to SARS-CoV-2 due to homologous epitopes. We aimed to investigate whether antibody responses to IBV cross-react with SARS-CoV-2 in poultry farm personnel who are occupationally exposed to aerosolized IBV vaccines. METHODS: We analyzed sera from poultry farm personnel, COVID-19 patients, and pre-pandemic controls. IgG levels against the SARS-CoV-2 antigens S1, RBD, S2, and N and peptides corresponding to the SARS-CoV-2 ORF3a, N, and S proteins as well as whole virus antigens of the four major S1-genotypes 4/91, IS/1494/06, M41, and D274 of IBV were investigated by in-house ELISAs. Moreover, live-virus neutralization test (VNT) was performed. RESULTS: A subgroup of poultry farm personnel showed elevated levels of specific IgG for all tested SARS-CoV-2 antigens compared with pre-pandemic controls. Moreover, poultry farm personnel, COVID-19 patients, and pre-pandemic controls showed specific IgG antibodies against IBV strains. These antibody titers were higher in long-term vaccine implementers. We observed a strong correlation between IBV-specific IgG and SARS-CoV-2 S1-, RBD-, S2-, and N-specific IgG in poultry farm personnel compared with pre-pandemic controls and COVID-19 patients. However, no neutralization was observed for these cross-reactive antibodies from poultry farm personnel using the VNT. CONCLUSION: We report here for the first time the detection of cross-reactive IgG antibodies against SARS-CoV-2 antigens in humans exposed to IBV vaccines. These findings may be useful for further studies on the adaptive immunity against COVID-19.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Agricultores , Virus de la Bronquitis Infecciosa , Humanos , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Inmunoglobulina G , Virus de la Bronquitis Infecciosa/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Reacciones Cruzadas , Aves de Corral , Animales
18.
bioRxiv ; 2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-35664993

RESUMEN

Infection by SARS-CoV-2 leads to diverse symptoms, which can persist for months. While antiviral antibodies are protective, those targeting interferons and other immune factors are associated with adverse COVID-19 outcomes. Instead, we discovered that antibodies against specific chemokines are omnipresent after COVID-19, associated with favorable disease, and predictive of lack of long COVID symptoms at one year post infection. Anti-chemokine antibodies are present also in HIV-1 infection and autoimmune disorders, but they target different chemokines than those in COVID-19. Monoclonal antibodies derived from COVID- 19 convalescents that bind to the chemokine N-loop impair cell migration. Given the role of chemokines in orchestrating immune cell trafficking, naturally arising anti-chemokine antibodies associated with favorable COVID-19 may be beneficial by modulating the inflammatory response and thus bear therapeutic potential. One-Sentence Summary: Naturally arising anti-chemokine antibodies associate with favorable COVID-19 and predict lack of long COVID.

19.
Allergy ; 77(8): 2468-2481, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35567391

RESUMEN

BACKGROUND: T-cell lymphopenia and functional impairment is a hallmark of severe acute coronavirus disease 2019 (COVID-19). How T-cell numbers and function evolve at later timepoints after clinical recovery remains poorly investigated. METHODS: We prospectively enrolled and longitudinally sampled 173 individuals with asymptomatic to critical COVID-19 and analyzed phenotypic and functional characteristics of T cells using flow cytometry, 40-parameter mass cytometry, targeted proteomics, and functional assays. RESULTS: The extensive T-cell lymphopenia observed particularly in patients with severe COVID-19 during acute infection had recovered 6 months after infection, which was accompanied by a normalization of functional T-cell responses to common viral antigens. We detected persisting CD4+ and CD8+ T-cell activation up to 12 months after infection, in patients with mild and severe COVID-19, as measured by increased HLA-DR and CD38 expression on these cells. Persistent T-cell activation after COVID-19 was independent of administration of a COVID-19 vaccine post-infection. Furthermore, we identified a subgroup of patients with severe COVID-19 that presented with persistently low CD8+ T-cell counts at follow-up and exhibited a distinct phenotype during acute infection consisting of a dysfunctional T-cell response and signs of excessive pro-inflammatory cytokine production. CONCLUSION: Our study suggests that T-cell numbers and function recover in most patients after COVID-19. However, we find evidence of persistent T-cell activation up to 12 months after infection and describe a subgroup of severe COVID-19 patients with persistently low CD8+ T-cell counts exhibiting a dysregulated immune response during acute infection.


Asunto(s)
COVID-19 , Linfopenia , Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , Humanos , Linfopenia/etiología , Linfopenia/metabolismo , SARS-CoV-2
20.
Sci Immunol ; 7(71): eabi9733, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35594340

RESUMEN

Atopic individuals show enhanced type 2 immune cell responses and a susceptibility to infections with certain bacteria and viruses. Although patients with allergic diseases harbor normal counts of circulating neutrophils, these cells exert deficient effector functions. However, the underlying mechanism of this dysregulation of neutrophils remains ill defined. Here, we find that development, aging, and elimination of neutrophils are accelerated in mice with a predisposition to type 2 immunity, which, in turn, causes susceptibility to infection with several bacteria. Neutrophil-mediated immunity to bacterial infection was greatly decreased in mice with a genetic or induced bias to type 2 immunity. Abrogation of interleukin-4 (IL-4) receptor signaling in these animals fully restored their antibacterial defense, which largely depended on Ly6G+ neutrophils. IL-4 signals accelerated the maturation of neutrophils in the bone marrow and caused their rapid release to the circulation and periphery. IL-4-stimulated neutrophils aged more rapidly in the periphery, as evidenced by their phenotypic and functional changes, including their decreased phagocytosis of bacterial particles. Moreover, neutrophils from type 2 immune predisposed mice were eliminated at a higher rate by apoptosis and phagocytosis by macrophages and dendritic cells. Collectively, IL-4 signaling-mediated neutrophil aging constitutes an important adaptive deficiency in type 2 inflammation, contributing to recurrent bacterial infections.


Asunto(s)
Infecciones Bacterianas , Hipersensibilidad Inmediata , Neutrófilos , Envejecimiento , Animales , Infecciones Bacterianas/metabolismo , Hipersensibilidad Inmediata/inmunología , Hipersensibilidad Inmediata/metabolismo , Interleucina-4/metabolismo , Ratones , Neutrófilos/metabolismo , Fagocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA