RESUMEN
The regulation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with polymorphisms and the methylation degree of the glucocorticoid receptor gene (NR3C1) and is potentially involved in the development of metabolic syndrome (MetS). In order to evaluate the association between MetS with the polymorphisms, methylation, and gene expression of the NR3C1 in the genetically isolated Brazilian Mennonite population, we genotyped 20 NR3C1 polymorphisms in 74 affected (MetS) and 138 unaffected individuals without affected first-degree relatives (Co), using exome sequencing, as well as five variants from non-exonic regions, in 70 MetS and 166 Co, using mass spectrometry. The methylation levels of 11 1F CpG sites were quantified using pyrosequencing (66 MetS and 141 Co), and the NR3C1 expression was evaluated via RT-qPCR (14 MetS and 25 Co). Age, physical activity, and family environment during childhood were associated with MetS. Susceptibility to MetS, independent of these factors, was associated with homozygosity for rs10482605*C (OR = 4.74, pcorr = 0.024) and the haplotype containing TTCGTTGATT (rs3806855*T_ rs3806854*T_rs10482605*C_rs10482614*G_rs6188*T_rs258813*T_rs33944801*G_rs34176759*A_rs17209258*T_rs6196*T, OR = 4.74, pcorr = 0.048), as well as for the CCT haplotype (rs41423247*C_ rs6877893*C_rs258763*T), OR = 6.02, pcorr = 0.030), but not to the differences in methylation or gene expression. Thus, NR3C1 polymorphisms seem to modulate the susceptibility to MetS in Mennonites, independently of lifestyle and early childhood events, and their role seems to be unrelated to DNA methylation and gene expression.
Asunto(s)
Síndrome Metabólico , Receptores de Glucocorticoides , Humanos , Metilación de ADN/genética , Genotipo , Glucocorticoides , Síndrome Metabólico/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , EtnicidadRESUMEN
Mutations in thyroid hormone receptor α1 (TRα1) cause Resistance to Thyroid Hormone α (RTHα), a disorder characterized by hypothyroidism in TRα1-expressing tissues including the heart. Surprisingly, we report that treatment of RTHα patients with thyroxine to overcome tissue hormone resistance does not elevate their heart rate. Cardiac telemetry in male, TRα1 mutant, mice indicates that such persistent bradycardia is caused by an intrinsic cardiac defect and not due to altered autonomic control. Transcriptomic analyses show preserved, thyroid hormone (T3)-dependent upregulation of pacemaker channels (Hcn2, Hcn4), but irreversibly reduced expression of several ion channel genes controlling heart rate. Exposure of TRα1 mutant male mice to higher maternal T3 concentrations in utero, restores altered expression and DNA methylation of ion channels, including Ryr2. Our findings indicate that target genes other than Hcn2 and Hcn4 mediate T3-induced tachycardia and suggest that treatment of RTHα patients with thyroxine in high dosage without concomitant tachycardia, is possible.
Asunto(s)
Síndrome de Resistencia a Hormonas Tiroideas , Tiroxina , Masculino , Animales , Ratones , Tiroxina/uso terapéutico , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Síndrome de Resistencia a Hormonas Tiroideas/genética , Hormonas Tiroideas , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Mutación , Taquicardia/genéticaRESUMEN
The estimation of dominance effects requires the availability of direct phenotypes, i.e., genotypes and phenotypes in the same individuals. In dairy cattle, classical QTL mapping approaches are, however, relying on genotyped sires and daughter-based phenotypes like breeding values. Thus, dominance effects cannot be estimated. The number of dairy bulls genotyped for dense genome-wide marker panels is steadily increasing in the context of genomic selection schemes. The availability of genotyped cows is, however, limited. Within the current study, the genotypes of male ancestors were applied to the calculation of genotype probabilities in cows. Together with the cows' phenotypes, these probabilities were used to estimate dominance effects on a genome-wide scale. The impact of sample size, the depth of pedigree used in deriving genotype probabilities, the linkage disequilibrium between QTL and marker, the fraction of variance explained by the QTL, and the degree of dominance on the power to detect dominance were analyzed in simulation studies. The effect of relatedness among animals on the specificity of detection was addressed. Furthermore, the approach was applied to a real data set comprising 470,000 Holstein cows. To account for relatedness between animals a mixed-model two-step approach was used to adjust phenotypes based on an additive genetic relationship matrix. Thereby, considerable dominance effects were identified for important milk production traits. The approach might serve as a powerful tool to dissect the genetic architecture of performance and functional traits in dairy cattle.