Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722688

RESUMEN

Applying advanced molecular profiling together with highly specific targeted therapies offers the possibility to better dissect the mechanisms underlying immune mediated inflammatory diseases such as systemic lupus erythematosus (SLE) in humans. Here we apply a combination of single cell RNA sequencing and T/B cell repertoire analysis to perform an in-depth characterization of molecular changes in the immune-signature upon CD19 CAR T cell-mediated depletion of B cells in SLE patients. The resulting datasets do not only confirm a selective CAR T cell-mediated reset of the B cell response, but simultaneously reveal consequent changes in the transcriptional signature of monocyte and T cell subsets that respond with a profound reduction in type 1 interferon signaling. Our current data thus provide evidence for a causal relationship between the B cell response and the increased interferon signature observed in SLE and additionally demonstrate the usefulness of combining targeted therapies and novel analytic approaches to decipher molecular mechanisms of immune-mediated inflammatory diseases in humans.

2.
Nat Med ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671240

RESUMEN

Bispecific T cell engagers (BiTEs) kill B cells by engaging T cells. BiTEs are highly effective in acute lymphoblastic leukemia. Here we treated six patients with multidrug-resistant rheumatoid arthritis (RA) with the CD19xCD3 BiTE blinatumomab under compassionate use. Low doses of blinatumomab led to B cell depletion and concomitant decrease of T cells, documenting their engager function. Treatment was safe, with brief increase in body temperature and acute phase proteins during first infusion but no signs of clinically relevant cytokine-release syndrome. Blinatumomab led to a rapid decline in RA clinical disease activity in all patients, improved synovitis in ultrasound and FAPI-PET-CT and reduced autoantibodies. High-dimensional flow cytometry analysis of B cells documented an immune reset with depletion of activated memory B cells, which were replaced by nonclass-switched IgD-positive naïve B cells. Together, these data suggest the feasibility and potential for BiTEs to treat RA. This approach warrants further exploration on other B-cell-mediated autoimmune diseases.

3.
Cancer Lett ; 590: 216866, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38589005

RESUMEN

Bone metastasis is a common complication of certain cancers such as melanoma. The spreading of cancer cells into the bone is supported by changes in the bone marrow environment. The specific role of osteocytes in this process is yet to be defined. By RNA-seq and chemokines screening we show that osteocytes release the chemokine CXCL5 when they are exposed to melanoma cells. Osteocytes-mediated CXCL5 secretion enhanced the migratory and invasive behaviour of melanoma cells. When the expression of the CXCL5 receptor, CXCR2, was down-regulated in melanoma cells in vitro, we observed a significant decrease in melanoma cell migration in response to osteocytes. Furthermore, melanoma cells with down-regulated CXCR2 expression showed less bone metastasis and less bone loss in the bone metastasis model in vivo. Furthermore, when simultaneously down-regulating CXCL5 in osteocytes and CXCR2 in melanoma cells, melanoma progression was abrogated in vivo. In summary, these data suggest a significant role of osteocytes in bone metastasis of melanoma, which is mediated through the CXCL5-CXCR2 pathway.


Asunto(s)
Neoplasias Óseas , Movimiento Celular , Quimiocina CXCL5 , Melanoma , Osteocitos , Receptores de Interleucina-8B , Osteocitos/metabolismo , Osteocitos/patología , Neoplasias Óseas/secundario , Neoplasias Óseas/metabolismo , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Animales , Melanoma/metabolismo , Melanoma/patología , Melanoma/secundario , Melanoma/genética , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Ratones , Línea Celular Tumoral , Humanos , Transducción de Señal , Melanoma Experimental/patología , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BL
4.
Ann Rheum Dis ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503474

RESUMEN

OBJECTIVES: To investigate the mechanism by which intestinal epithelial cell (IEC) death induces arthritis. METHODS: IEC death was assessed by staining for necroptosis and apoptosis markers and fluorescence in situ hybridisation at different time points during collagen-induced arthritis (CIA). During the development of CIA, messenger RNA (mRNA) sequencing was performed, followed by Gene Ontology enrichment analysis of differentially expressed genes. Mice deficient for hypoxia-inducible factor 1α (Hif1a) in IECs (Hif1a ∆IEC) were generated and induced for arthritis. mRNA sequencing, chromatin immunoprecipitated (ChIP) DNA sequencing and ChIP-qualitative PCR were performed on IECs from Hif1a ∆IEC mice and littermate controls. Effects of HIF1α stabilisation by inhibition of prolyl hydroxylase domain-containing enzymes and treatment with the inhibitor of receptor-interacting protein kinase-3 (RIPK3) were tested in intestinal organoids and in CIA. RESULTS: IEC underwent apoptotic and necroptotic cell death at the onset of arthritis, leading to impaired gut barrier function. HIF1α was identified as one of the most upregulated genes in IECs during the onset of arthritis. Deletion of Hif1a in IEC enhanced IEC necroptosis, triggered intestinal inflammation and exacerbated arthritis. HIF1α was found to be a key transcriptional repressor for the necroptosis-inducing factor RIPK3. Enhanced RIPK3 expression, indicating necroptosis, was also found in the intestinal epithelium of patients with new-onset rheumatoid arthritis. Therapeutic stabilisation of HIF1α as well as small-molecule-based RIPK3 inhibition rescued intestinal necroptosis in vitro and in vivo and suppressed the development of arthritis. CONCLUSION: Our results identify IEC necroptosis as a critical link between the gut and the development of arthritis.

5.
Nat Commun ; 15(1): 1067, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316791

RESUMEN

Eosinophils are involved in tissue homeostasis. Herein, we unveiled eosinophils as important regulators of bone homeostasis. Eosinophils are localized in proximity to bone-resorbing osteoclasts in the bone marrow. The absence of eosinophils in ΔdblGATA mice results in lower bone mass under steady-state conditions and amplified bone loss upon sex hormone deprivation and inflammatory arthritis. Conversely, increased numbers of eosinophils in IL-5 transgenic mice enhance bone mass under steady-state conditions and protect from hormone- and inflammation- mediated bone loss. Eosinophils strongly inhibit the differentiation and demineralization activity of osteoclasts and lead to profound changes in the transcriptional profile of osteoclasts. This osteoclast-suppressive effect of eosinophils is based on the release of eosinophil peroxidase causing impaired reactive oxygen species and mitogen-activated protein kinase induction in osteoclast precursors. In humans, the number and the activity of eosinophils correlates with bone mass in healthy participants and rheumatoid arthritis patients. Taken together, experimental and human data indicate a regulatory function of eosinophils on bone.


Asunto(s)
Resorción Ósea , Peroxidasa del Eosinófilo , Osteoclastos , Animales , Humanos , Ratones , Resorción Ósea/metabolismo , Diferenciación Celular , Peroxidasa del Eosinófilo/metabolismo , Eosinófilos , Homeostasis , Ratones Transgénicos , Osteoclastos/metabolismo
6.
N Engl J Med ; 390(8): 687-700, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38381673

RESUMEN

BACKGROUND: Treatment for autoimmune diseases such as systemic lupus erythematosus (SLE), idiopathic inflammatory myositis, and systemic sclerosis often involves long-term immune suppression. Resetting aberrant autoimmunity in these diseases through deep depletion of B cells is a potential strategy for achieving sustained drug-free remission. METHODS: We evaluated 15 patients with severe SLE (8 patients), idiopathic inflammatory myositis (3 patients), or systemic sclerosis (4 patients) who received a single infusion of CD19 chimeric antigen receptor (CAR) T cells after preconditioning with fludarabine and cyclophosphamide. Efficacy up to 2 years after CAR T-cell infusion was assessed by means of Definition of Remission in SLE (DORIS) remission criteria, American College of Rheumatology-European League against Rheumatism (ACR-EULAR) major clinical response, and the score on the European Scleroderma Trials and Research Group (EUSTAR) activity index (with higher scores indicating greater disease activity), among others. Safety variables, including cytokine release syndrome and infections, were recorded. RESULTS: The median follow-up was 15 months (range, 4 to 29). The mean (±SD) duration of B-cell aplasia was 112±47 days. All the patients with SLE had DORIS remission, all the patients with idiopathic inflammatory myositis had an ACR-EULAR major clinical response, and all the patients with systemic sclerosis had a decrease in the score on the EUSTAR activity index. Immunosuppressive therapy was completely stopped in all the patients. Grade 1 cytokine release syndrome occurred in 10 patients. One patient each had grade 2 cytokine release syndrome, grade 1 immune effector cell-associated neurotoxicity syndrome, and pneumonia that resulted in hospitalization. CONCLUSIONS: In this case series, CD19 CAR T-cell transfer appeared to be feasible, safe, and efficacious in three different autoimmune diseases, providing rationale for further controlled clinical trials. (Funded by Deutsche Forschungsgemeinschaft and others.).


Asunto(s)
Antígenos CD19 , Inmunoterapia Adoptiva , Lupus Eritematoso Sistémico , Agonistas Mieloablativos , Miositis , Esclerodermia Sistémica , Humanos , Antígenos CD19/administración & dosificación , Síndrome de Liberación de Citoquinas/etiología , Estudios de Seguimiento , Lupus Eritematoso Sistémico/terapia , Miositis/terapia , Esclerodermia Sistémica/terapia , Agonistas Mieloablativos/administración & dosificación , Ciclofosfamida/administración & dosificación , Infecciones/etiología , Resultado del Tratamiento
7.
Ann Rheum Dis ; 83(1): 72-87, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37775153

RESUMEN

OBJECTIVES: To investigate the effect of the L-arginine metabolism on arthritis and inflammation-mediated bone loss. METHODS: L-arginine was applied to three arthritis models (collagen-induced arthritis, serum-induced arthritis and human TNF transgenic mice). Inflammation was assessed clinically and histologically, while bone changes were quantified by µCT and histomorphometry. In vitro, effects of L-arginine on osteoclast differentiation were analysed by RNA-seq and mass spectrometry (MS). Seahorse, Single Cell ENergetIc metabolism by profilIng Translation inHibition and transmission electron microscopy were used for detecting metabolic changes in osteoclasts. Moreover, arginine-associated metabolites were measured in the serum of rheumatoid arthritis (RA) and pre-RA patients. RESULTS: L-arginine inhibited arthritis and bone loss in all three models and directly blocked TNFα-induced murine and human osteoclastogenesis. RNA-seq and MS analyses indicated that L-arginine switched glycolysis to oxidative phosphorylation in inflammatory osteoclasts leading to increased ATP production, purine metabolism and elevated inosine and hypoxanthine levels. Adenosine deaminase inhibitors blocking inosine and hypoxanthine production abolished the inhibition of L-arginine on osteoclastogenesis in vitro and in vivo. Altered arginine levels were also found in RA and pre-RA patients. CONCLUSION: Our study demonstrated that L-arginine ameliorates arthritis and bone erosion through metabolic reprogramming and perturbation of purine metabolism in osteoclasts.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Resorción Ósea , Humanos , Ratones , Animales , Osteoclastos , Artritis Reumatoide/patología , Artritis Experimental/patología , Inflamación/metabolismo , Ratones Transgénicos , Arginina/farmacología , Inosina/metabolismo , Inosina/farmacología , Hipoxantinas/metabolismo , Hipoxantinas/farmacología , Purinas/farmacología
8.
Arthritis Rheumatol ; 76(4): 497-504, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38114423

RESUMEN

B cell generation of autoantibodies is a crucial step in the pathogenesis of systemic lupus erythematosus (SLE). After their differentiation in the bone marrow, B cells populate the secondary lymphatic organs, where they undergo further maturation leading to the development of memory B cells as well as antibody-producing plasmablasts and plasma cells. Targeting B cells is an important strategy to treat autoimmune diseases such as SLE, in which B cell tolerance is disturbed and autoimmune B cells and autoantibodies emerge. This review discusses the functional aspects of antibody- and cell-based B cell-depleting therapy in SLE. It thereby particularly focuses on lessons learned from chimeric antigen receptor (CAR) T cell treatment on the role of B cells in SLE for understanding B cell pathology in SLE. CAR T cells model a deep B cell depletion and thereby allow understanding the role of aberrant B cell activation in the pathogenesis of SLE. Furthermore, the effects of B cell depletion on autoantibody production can be better described, ie, explaining the concept of different cellular sources of (auto-) antibodies in the form of short-lived plasmablasts and long-lived plasma cells, which differ in their susceptibility to B cell depletion and require different targeted therapeutic approaches. Finally, the safety of deep B cell depletion in autoimmune disease is discussed.


Asunto(s)
Lupus Eritematoso Sistémico , Receptores Quiméricos de Antígenos , Humanos , Linfocitos B , Antígenos CD19 , Autoanticuerpos , Linfocitos T
9.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834391

RESUMEN

Obesity is characterized by the expansion of the adipose tissue, usually accompanied by inflammation, with a prominent role of macrophages infiltrating the visceral adipose tissue (VAT). This chronic inflammation is a major driver of obesity-associated comorbidities. Four-and-a-half LIM-domain protein 2 (FHL2) is a multifunctional adaptor protein that is involved in the regulation of various biological functions and the maintenance of the homeostasis of different tissues. In this study, we aimed to gain new insights into the expression and functional role of FHL2 in VAT in diet-induced obesity. We found enhanced FHL2 expression in the VAT of mice with Western-type diet (WTD)-induced obesity and obese humans and identified macrophages as the cellular source of enhanced FHL2 expression in VAT. In mice with FHL2 deficiency (FHL2KO), WTD feeding resulted in reduced body weight gain paralleled by enhanced energy expenditure and uncoupling protein 1 (UCP1) expression, indicative of activated thermogenesis. In human VAT, FHL2 was inversely correlated with UCP1 expression. Furthermore, macrophage infiltration and the expression of the chemokine MCP-1, a known promotor of macrophage accumulation, was significantly reduced in WTD-fed FHL2KO mice compared with wild-type (wt) littermates. While FHL2 depletion did not affect the differentiation or lipid metabolism of adipocytes in vitro, FHL2 depletion in macrophages resulted in reduced expressions of MCP-1 and the neuropeptide Y (NPY). Furthermore, WTD-fed FHL2KO mice showed reduced NPY expression in VAT compared with wt littermates, and NPY expression was enhanced in VAT resident macrophages of obese individuals. Stimulation with recombinant NPY induced not only UCP1 expression and lipid accumulation but also MCP-1 expression in adipocytes. Collectively, these findings indicate that FHL2 is a positive regulator of NPY and MCP-1 expression in macrophages and herewith closely linked to the mechanism of obesity-associated lipid accumulation and inflammation in VAT. Thus, FHL2 appears as a potential novel target to interfere with the macrophage-adipocyte crosstalk in VAT for treating obesity and related metabolic disorders.


Asunto(s)
Grasa Intraabdominal , Neuropéptido Y , Animales , Humanos , Ratones , Tejido Adiposo/metabolismo , Dieta , Dieta Alta en Grasa , Inflamación/metabolismo , Grasa Intraabdominal/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Lípidos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neuropéptido Y/metabolismo , Obesidad/metabolismo , Factores de Transcripción/metabolismo
10.
Cell Rep ; 42(7): 112713, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37421628

RESUMEN

Although it is known that psoriasis is strongly associated with obesity, the mechanistic connection between diet and skin lesions is not well established. Herein, we showed that only dietary fat, not carbohydrates or proteins, exacerbates psoriatic disease. Enhanced psoriatic skin inflammation was associated with changes in the intestinal mucus layer and microbiota composition by high-fat diet (HFD). Change of intestinal microbiota by vancomycin treatment effectively blocked activation of psoriatic skin inflammation by HFD, inhibited the systemic interleukin-17 (IL-17) response, and led to increased mucophilic bacterial species such as Akkermansia muciniphila. By using IL-17 reporter mice, we could show that HFD facilitates IL-17-mediated γδ T cell response in the spleen. Notably, oral gavage with live or heat-killed A. muciniphila effectively inhibited HFD-induced enhancement of psoriatic disease. In conclusion, HFD exacerbates psoriatic skin inflammation through changing the mucus barrier and the intestine microbial composition, which leads to an enhanced systemic IL-17 response.


Asunto(s)
Dermatitis , Microbioma Gastrointestinal , Psoriasis , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Interleucina-17/metabolismo , Psoriasis/inducido químicamente , Inflamación/metabolismo , Ratones Endogámicos C57BL
11.
J Orofac Orthop ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314489

RESUMEN

Although substantial progress has been made in dentistry in terms of diagnosis and therapy, current treatment methods in periodontology, orthodontics, endodontics, and oral and maxillofacial surgery, nevertheless, suffer from numerous limitations, some of which are associated with a dramatic reduction in the quality of life. Many general mechanisms of inflammation and immunity also apply to the oral cavity and oral diseases. Nonetheless, there are special features here that are attributable, on the one hand, to developmental biology and, on the other hand, to the specific anatomical situation, which is characterized by a close spatial relationship of soft and hard tissues, exposure to oral microbiota, and to a rapid changing external environment. Currently, a comprehensive and overarching understanding is lacking about how the immune system functions in oral tissues (oral immunology) and how oral immune responses contribute to oral health and disease. Since advances in translational immunology have created a game-changing shift in therapy in rheumatology, allergic diseases, inflammatory bowel disease, and oncology in recent years, it is reasonable to assume that a better understanding of oral immunology might lead to practice-changing diagnostic procedures and therapies in dentistry and thereby also profoundly improve oral health in general.

12.
Arthritis Rheumatol ; 75(10): 1736-1748, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37219936

RESUMEN

OBJECTIVE: In this study, we aimed to decipher the gut microbiome (GM) and serum metabolic characteristic of individuals at high risk for rheumatoid arthritis (RA) and to investigate the causative effect of GM on the mucosal immune system and its involvement in the pathogenesis of arthritis. METHODS: Fecal samples were collected from 38 healthy individuals and 53 high-risk RA individuals with anti-citrullinated protein antibody (ACPA) positivity (Pre-RA), 12 of 53 Pre-RA individuals developed RA within 5 years of follow-up. The differences in intestinal microbial composition between the healthy controls and Pre-RA individuals or among Pre-RA subgroups were identified by 16S ribosomal RNA sequencing. The serum metabolite profile and its correlation with GM were also explored. Moreover, antibiotic-pretreated mice that received GM from the healthy control or Pre-RA groups were then evaluated for intestinal permeability, inflammatory cytokines, and immune cell populations. Collagen-induced arthritis (CIA) was also applied to test the effect of fecal microbiota transplantation (FMT) from Pre-RA individuals on arthritis severity in mice. RESULTS: Stool microbial diversity was lower in Pre-RA individuals than in healthy controls. The bacterial community structure and function significantly differed between healthy controls and Pre-RA individuals. Although there were differences to some extent in the bacterial abundance among the Pre-RA subgroups, no robust functional differences were observed. The metabolites in the serum of the Pre-RA group were dramatically different from those in the healthy controls group, with KEGG pathway enrichment of amino acid and lipid metabolism. Moreover, intestinal bacteria from the Pre-RA group increased intestinal permeability in FMT mice and zonula occludens-1 expression in the small intestine and Caco-2 cells. Moreover, Th17 cells in the mesenteric lymph nodes and Peyer's patches were also increased in mice receiving Pre-RA feces compared to healthy controls. The changes in intestinal permeability and Th17-cell activation prior to arthritis induction enhanced CIA severity in PreRA-FMT mice compared with HC-FMT mice. CONCLUSION: Gut microbial dysbiosis and metabolome alterations already occur in individuals at high risk for RA. FMT from preclinical individuals triggers intestinal barrier dysfunction and changes mucosal immunity, further contributing to the development of arthritis.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Microbioma Gastrointestinal/genética , Inmunidad Mucosa , Células CACO-2 , Metaboloma , ARN Ribosómico 16S/genética
13.
J Bone Miner Res ; 38(1): 86-102, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36332102

RESUMEN

Vector-borne infections of humans with the protozoan parasite Leishmania (L.) infantum can cause a systemic and potentially lethal disease termed visceral leishmaniasis. In the corresponding mouse model, an intravenous infection with L. infantum leads to the persistence of parasites in various organs, including bone marrow (BM). Considering the anatomical proximity between the BM and the cortical bone, we investigated whether a chronic infection with L. infantum affected bone homeostasis. Unexpectedly, chronic infection with L. infantum caused an increase in bone mass in mice. In vivo, an increased number of osteoblasts and osteocytes and a decreased maturation of osteoclasts characterized the phenotype. Confocal laser scanning fluorescence microscopy confirmed the infection of BM macrophages but also revealed the presence of parasites in osteoclasts. In vitro, mature osteoclasts took up L. infantum parasites. However, infection of osteoclast progenitors abolished their differentiation and function. In addition, secretory products of infected BM-derived macrophages inhibited the maturation of osteoclasts. Both in vitro and in vivo, infected macrophages and osteoclasts showed an enhanced expression of the anti-osteoclastogenic chemokine CCL5 (RANTES). Neutralization of CCL5 prevented the inhibition of osteoclast generation seen in the presence of culture supernatants from L. infantum-infected macrophages. Altogether, our study shows that chronic infection with Leishmania increases bone mass by inducing bone formation and impairing osteoclast differentiation and function. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Leishmania infantum , Leishmaniasis Visceral , Humanos , Animales , Ratones , Leishmania infantum/genética , Infección Persistente , Leishmaniasis Visceral/metabolismo , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/prevención & control , Macrófagos/metabolismo , Médula Ósea
14.
EMBO Mol Med ; 15(2): e15931, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36479617

RESUMEN

Infection with the intracellular bacterium Coxiella (C.) burnetii can cause chronic Q fever with severe complications and limited treatment options. Here, we identify the enzyme cis-aconitate decarboxylase 1 (ACOD1 or IRG1) and its product itaconate as protective host immune pathway in Q fever. Infection of mice with C. burnetii induced expression of several anti-microbial candidate genes, including Acod1. In macrophages, Acod1 was essential for restricting C. burnetii replication, while other antimicrobial pathways were dispensable. Intratracheal or intraperitoneal infection of Acod1-/- mice caused increased C. burnetii burden, weight loss and stronger inflammatory gene expression. Exogenously added itaconate restored pathogen control in Acod1-/- mouse macrophages and blocked replication in human macrophages. In axenic cultures, itaconate directly inhibited growth of C. burnetii. Finally, treatment of infected Acod1-/- mice with itaconate efficiently reduced the tissue pathogen load. Thus, ACOD1-derived itaconate is a key factor in the macrophage-mediated defense against C. burnetii and may be exploited for novel therapeutic approaches in chronic Q fever.


Asunto(s)
Coxiella burnetii , Fiebre Q , Animales , Humanos , Ratones , Coxiella burnetii/genética , Macrófagos , Fiebre Q/genética , Fiebre Q/microbiología
15.
Nanomedicine ; 48: 102635, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36481472

RESUMEN

Autoimmune diseases (AIDs) are caused by the loss of self-tolerance and destruction of tissues by the host's immune system. Several antigen-specific immunotherapies, focused on arresting the autoimmune attack, have been tested in clinical trials with discouraging results. Therefore, there is a need for innovative strategies to restore self-tolerance safely and definitively in AIDs. We previously demonstrated the therapeutic efficacy of phosphatidylserine (PS)-liposomes encapsulating autoantigens in experimental type 1 diabetes and multiple sclerosis. Here, we show that PS-liposomes can be adapted to other autoimmune diseases by simply replacing the encapsulated autoantigen. After administration, they are distributed to target organs, captured by phagocytes and interact with several immune cells, thus exerting a tolerogenic and immunoregulatory effect. Specific PS-liposomes demonstrate great preventive and therapeutic efficacy in rheumatoid arthritis and myasthenia gravis. Thus, this work highlights the therapeutic potential of a platform for several autoimmunity settings, which is specific, safe, and with long-term effects.


Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 1 , Humanos , Autoantígenos , Liposomas , Enfermedades Autoinmunes/tratamiento farmacológico , Tolerancia Inmunológica
16.
Cereb Cortex ; 33(3): 844-864, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35296883

RESUMEN

Alcohol use, abuse, and addiction, and resulting health hazards are highly sex-dependent with unknown mechanisms. Previously, strong links between the SMPD3 gene and its coded protein neutral sphingomyelinase 2 (NSM) and alcohol abuse, emotional behavior, and bone defects were discovered and multiple mechanisms were identified for females. Here we report strong sex-dimorphisms for central, but not for peripheral mechanisms of NSM action in mouse models. Reduced NSM activity resulted in enhanced alcohol consumption in males, but delayed conditioned rewarding effects. It enhanced the acute dopamine response to alcohol, but decreased monoaminergic systems adaptations to chronic alcohol. Reduced NSM activity increased depression- and anxiety-like behavior, but was not involved in alcohol use for the self-management of the emotional state. Constitutively reduced NSM activity impaired structural development in the brain and enhanced lipidomic sensitivity to chronic alcohol. While the central effects were mostly opposite to NSM function in females, similar roles in bone-mediated osteocalcin release and its effects on alcohol drinking and emotional behavior were observed. These findings support the view that the NSM and multiple downstream mechanism may be a source of the sex-differences in alcohol use and emotional behavior.


Asunto(s)
Emociones , Esfingomielina Fosfodiesterasa , Masculino , Ratones , Animales , Femenino , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Consumo de Bebidas Alcohólicas , Ansiedad/metabolismo , Encéfalo/metabolismo , Etanol
17.
Front Cell Dev Biol ; 10: 974851, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578780

RESUMEN

Introduction: Increasing evidences have shown that hypoxia and the immune microenvironment play vital roles in the development of osteosarcoma. However, reliable gene signatures based on the combination of hypoxia and the immune status for prognostic prediction of osteosarcoma have so far not been identified. Methods: The individual hypoxia and immune status of osteosarcoma patients were identified with transcriptomic profiles of a training cohort from the TARGET database using ssGSEA and ESTIMATE algorithms, respectively. Lasso regression and stepwise Cox regression were performed to develop a hypoxia-immune-based gene signature. An independent cohort from the GEO database was used for external validation. Finally, a nomogram was constructed based on the gene signature and clinical features to improve the risk stratification and to quantify the risk assessment for individual patients. Results: Hypoxia and the immune status were significantly associated with the prognosis of osteosarcoma patients. Seven hypoxia- and immune-related genes (BNIP3, SLC38A5, SLC5A3, CKMT2, S100A3, CXCL11 and PGM1) were identified to be involved in our prognostic signature. In the training cohort, the prognostic signature discriminated high-risk patients with osteosarcoma. The hypoxia-immune-based gene signature proved to be a stable and predictive method as determined in different datasets and subgroups of patients. Furthermore, a nomogram based on the prognostic signature was generated to optimize the risk stratification and to quantify the risk assessment. Similar results were validated in an independent GEO cohort, confirming the stability and reliability of the prognostic signature. Conclusion: The hypoxia-immune-based prognostic signature might contribute to the optimization of risk stratification for survival and personalized management of osteosarcoma patients.

18.
Front Immunol ; 13: 958974, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148242

RESUMEN

Osteoclasts are polykaryons formed by cell-cell fusion of highly motile progenitors of the myeloid lineage. Osteoclast activity can preserve skeletal strength and bone homeostasis. However, osteoclasts are responsible for bone destruction in rheumatoid arthritis (RA). Fc receptors activated by IgG immune complexes (IC) can boost osteoclast differentiation and bone loss in the course of RA. In contrast, interferon (IFN) γ secreted by immune cells blocks osteoclast activation. Despite their hypothetical importance in the regulation of osteoclast differentiation in RA, the interconnection between the two pathways has not been described so far. Here, we show by total internal reflection fluorescence (TIRF) microscopy that FcγR3 and IFNγ receptor (IFNγR) locate at close vicinity to each other on the human osteoclast surface. Moreover, the average distance increases during the differentiation process. Interestingly, FcγR and IFNγR activation shapes the position of both receptors to each other. Surprisingly, the inhibitory action of IFNγ on in-vitro human osteoclast differentiation depends on the osteoclast differentiation stage. Indeed, IFNγR activation in early osteoclast precursors completely inhibits the formation of polynucleated osteoclasts, while in premature osteoclasts, it further enhanced their fusion. In addition, gene expression analyses showed that IFNγR activation on early precursor cells but not on premature osteoclasts could induce FcγR expression, suggesting a co-regulation of both receptors on human osteoclast precursors. Phosphokinase array data of precursor cells demonstrate that the observed divergence of IFNγR signaling is dependent on the mitogen-activated protein kinase (MAPK) downstream signaling pathway. Overall, our data indicate that FcγR and IFNγR signaling pathways co-influence the differentiation and activity of osteoclasts dependent on the differentiation state, which might reflect the different stages in RA.


Asunto(s)
Artritis Reumatoide , Osteoclastos , Complejo Antígeno-Anticuerpo/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Inmunoglobulina G/metabolismo , Interferones/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Osteoclastos/metabolismo , Receptores de IgG/metabolismo
19.
Front Immunol ; 13: 936995, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003376

RESUMEN

Here we show that soluble CD83 induces the resolution of inflammation in an antigen-induced arthritis (AIA) model. Joint swelling and the arthritis-related expression levels of IL-1ß, IL-6, RANKL, MMP9, and OC-Stamp were strongly reduced, while Foxp3 was induced. In addition, we observed a significant inhibition of TRAP+ osteoclast formation, correlating with the reduced arthritic disease score. In contrast, cell-specific deletion of CD83 in human and murine precursor cells resulted in an enhanced formation of mature osteoclasts. RNA sequencing analyses, comparing sCD83- with mock treated cells, revealed a strong downregulation of osteoclastogenic factors, such as Oc-Stamp, Mmp9 and Nfatc1, Ctsk, and Trap. Concomitantly, transcripts typical for pro-resolving macrophages, e.g., Mrc1/2, Marco, Klf4, and Mertk, were upregulated. Interestingly, members of the metallothionein (MT) family, which have been associated with a reduced arthritic disease severity, were also highly induced by sCD83 in samples derived from RA patients. Finally, we elucidated the sCD83-induced signaling cascade downstream to its binding to the Toll-like receptor 4/(TLR4/MD2) receptor complex using CRISPR/Cas9-induced knockdowns of TLR4/MyD88/TRIF and MTs, revealing that sCD83 acts via the TRIF-signaling cascade. In conclusion, sCD83 represents a promising therapeutic approach to induce the resolution of inflammation and to prevent bone erosion in autoimmune arthritis.


Asunto(s)
Antígenos CD , Artritis , Inmunoglobulinas , Glicoproteínas de Membrana , Osteólisis , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Antígenos CD/metabolismo , Artritis/metabolismo , Humanos , Inmunoglobulinas/metabolismo , Inflamación/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Osteoclastos/metabolismo , Osteólisis/metabolismo , Receptor Toll-Like 4/metabolismo , Antígeno CD83
20.
Front Endocrinol (Lausanne) ; 13: 902033, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800430

RESUMEN

Bone marrow adipocytes (BMAs) represent 10% of the total fat mass of the human body and serve as an energy reservoir for the skeletal niche. They function as an endocrine organ by actively secreting fatty acids, cytokines, and adipokines. The volume of BMAs increases along with age, osteoporosis and/or obesity. With the rapid development of multi-omic analysis and the advance in in vivo imaging technology, further distinct characteristics and functions of BMAs have been revealed. There is accumulating evidence that BMAs are metabolically, biologically and functionally unique from white, brown, beige and pink adipocytes. Bone metastatic disease is an uncurable complication in cancer patients, where primary cancer cells spread from their original site into the bone marrow. Recent publications have highlighted those BMAs could also serve as a rich lipid source of fatty acids that can be utilized by the cancer cells during bone metastasis, particularly for breast, prostate, lung, ovarian and pancreatic cancer as well as melanoma. In this review, we summarize the novel progressions in BMAs metabolism, especially with multi-omic analysis and in vivo imaging technology. We also update the metabolic role of BMAs in bone metastasis, and their potential new avenues for diagnosis and therapies against metastatic cancers.


Asunto(s)
Médula Ósea , Neoplasias Óseas , Adipocitos/metabolismo , Adipoquinas/metabolismo , Médula Ósea/patología , Neoplasias Óseas/metabolismo , Ácidos Grasos/metabolismo , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA