Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pathogens ; 12(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36839460

RESUMEN

Head and neck squamous cell carcinomas (HNSCC) caused by infections with high-risk human papillomaviruses (HPV) are responsible for an increasing number of head and neck cancers, particularly in the oropharynx. Despite the significant biological differences between HPV-driven and HPV-negative HNSCC, treatment strategies are similar and not HPV targeted. HPV-driven HNSCC are known to be more sensitive to treatment, particularly to radiotherapy, which is at least partially due to HPV-induced immunogenicity. The development of novel therapeutic strategies that are specific for HPV-driven cancers requires tumor models that reflect as closely as possible the characteristics and complexity of human tumors and their response to treatment. Current HPV-positive cancer models lack one or more hallmarks of their human counterpart. This study presents the development of a new HPV16 oncoprotein-dependent tumor model in MHC-humanized mice, modeling the major biologic features of HPV-driven tumors and presenting HLA-A2-restricted HPV16 epitopes. Furthermore, this model was developed to be orthotopic (base of tongue). Thus, it also reflects the correct tumor microenvironment of HPV-driven HNSCC. The cancer cells are implanted in a manner that allows the exact control of the anatomical location of the developing tumor, thereby homogenizing tumor growth. In conclusion, the new model is suited to study HPV16-specific therapeutic vaccinations and other immunotherapies, as well as tumor-targeted interventions, such as surgery or radiotherapy, or a combination of all these modalities.

2.
Nat Cancer ; 3(4): 486-504, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35469015

RESUMEN

Disseminated cancer cells frequently lodge near vasculature in secondary organs. However, our understanding of the cellular crosstalk invoked at perivascular sites is still rudimentary. Here, we identify intercellular machinery governing formation of a pro-metastatic vascular niche during breast cancer colonization in the lung. We show that specific secreted factors, induced in metastasis-associated endothelial cells (ECs), promote metastasis in mice by enhancing stem cell properties and the viability of cancer cells. Perivascular macrophages, activated via tenascin C (TNC) stimulation of Toll-like receptor 4 (TLR4), were shown to be crucial in niche activation by secreting nitric oxide (NO) and tumor necrosis factor (TNF) to induce EC-mediated production of niche components. Notably, this mechanism was independent of vascular endothelial growth factor (VEGF), a key regulator of EC behavior and angiogenesis. However, targeting both macrophage-mediated vascular niche activation and VEGF-regulated angiogenesis resulted in added potency to curb lung metastasis in mice. Together, our findings provide mechanistic insights into the formation of vascular niches in metastasis.


Asunto(s)
Neoplasias Pulmonares , Macrófagos , Tenascina , Animales , Células Endoteliales/metabolismo , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Neovascularización Patológica/patología , Tenascina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Mol Ther Methods Clin Dev ; 24: 268-279, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35211639

RESUMEN

Hepatic gene therapy by delivering non-integrating therapeutic vectors in newborns remains challenging due to the risk of dilution and loss of efficacy in the growing liver. Previously we reported on hepatocyte transfection in piglets by intraportal injection of naked DNA vectors. Here, we established delivery of naked DNA vectors to target periportal hepatocytes in weaned pigs by hydrodynamic retrograde intrabiliary injection (HRII). The surgical procedure involved laparotomy and transient isolation of the liver. For vector delivery, a catheter was placed within the common bile duct by enterotomy. Under optimal conditions, no histological abnormalities were observed in liver tissue upon pressurized injections. The transfection of hepatocytes in all tested liver samples was observed with vectors expressing luciferase from a liver-specific promoter. However, vector copy number and luciferase expression were low compared to hydrodynamic intraportal injection. A 10-fold higher number of vector genomes and luciferase expression was observed in pigs using a non-integrating naked DNA vector with the potential for replication. In summary, the HRII application was less efficient (i.e., lower luciferase activity and vector copy numbers) than the intraportal delivery method but was significantly less distressful for the piglets and has the potential for injection (or re-injection) of vector DNA by endoscopic retrograde cholangiopancreatography.

4.
Stem Cell Reports ; 17(1): 143-158, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34942088

RESUMEN

The genetic modification of stem cells (SCs) is typically achieved using integrating vectors, whose potential integrative genotoxicity and propensity for epigenetic silencing during differentiation limit their application. The genetic modification of cells should provide sustainable levels of transgene expression, without compromising the viability of a cell or its progeny. We developed nonviral, nonintegrating, and autonomously replicating minimally sized DNA nanovectors to persistently genetically modify SCs and their differentiated progeny without causing any molecular or genetic damage. These DNA vectors are capable of efficiently modifying murine and human pluripotent SCs with minimal impact and without differentiation-mediated transgene silencing or vector loss. We demonstrate that these vectors remain episomal and provide robust and sustained transgene expression during self-renewal and targeted differentiation of SCs both in vitro and in vivo through embryogenesis and differentiation into adult tissues, without damaging their phenotypic characteristics.


Asunto(s)
Diferenciación Celular , Expresión Génica , Vectores Genéticos/genética , Plásmidos/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fibroblastos , Perfilación de la Expresión Génica , Humanos , Ratones , Transgenes
5.
Sci Adv ; 7(16)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33853779

RESUMEN

The compelling need to provide adoptive cell therapy (ACT) to an increasing number of oncology patients within a meaningful therapeutic window makes the development of an efficient, fast, versatile, and safe genetic tool for creating recombinant T cells indispensable. In this study, we used nonintegrating minimally sized DNA vectors with an enhanced capability of generating genetically modified cells, and we demonstrate that they can be efficiently used to engineer human T lymphocytes. This vector platform contains no viral components and is capable of replicating extrachromosomally in the nucleus of dividing cells, providing persistent transgene expression in human T cells without affecting their behavior and molecular integrity. We use this technology to provide a manufacturing protocol to quickly generate chimeric antigen receptor (CAR)-T cells at clinical scale in a closed system and demonstrate their enhanced anti-tumor activity in vitro and in vivo in comparison to previously described integrating vectors.


Asunto(s)
Neoplasias , Linfocitos T , ADN/genética , ADN/metabolismo , Vectores Genéticos/genética , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Transgenes
6.
Mol Ther Methods Clin Dev ; 17: 957-968, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32420409

RESUMEN

We describe herein non-integrating minimally sized nano-S/MAR DNA vectors, which can be used to genetically modify dividing cells in place of integrating vectors. They represent a unique genetic tool, which avoids vector-mediated damage. Previous work has shown that DNA vectors comprising a mammalian S/MAR element can provide persistent mitotic stability over hundreds of cell divisions, resisting epigenetic silencing and thereby allowing sustained transgene expression. The composition of the original S/MAR vectors does present some inherent limitations that can provoke cellular toxicity. Herein, we present a new system, the nano-S/MAR, which drives higher transgene expression and has improved efficiency of establishment, due to the minimal impact on cellular processes and perturbation of the endogenous transcriptome. We show that these features enable the hitherto challenging genetic modification of patient-derived cells to stably restore the tumor suppressor gene SMAD4 to a patient-derived SMAD4 knockout pancreatic cancer line. Nano-S/MAR modification does not alter the molecular or phenotypic integrity of the patient-derived cells in cell culture and xenograft mouse models. In conclusion, we show that these DNA vectors can be used to persistently modify a range of cells, providing sustained transgene expression while avoiding the risks of insertional mutagenesis and other vector-mediated toxicity.

7.
Methods Enzymol ; 629: 419-441, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31727252

RESUMEN

The speed of T cell receptor (TCR) discovery has been revolutionized by barcode-based TCR sequencing approaches that allow the reconstitution of a T cell's paired alpha and beta TCR chain, and the process of TCR discovery promises to become ever faster and cheaper with the continuing development single cell analysis techniques. This technological progress has generated an urgent need to develop efficient TCR validation platforms for the rapid and safe clinical translation of TCRs into therapeutic agents. Whereas much attention has in the past focused on CD8-positive cytotoxic T cells recognizing MHC class I presented epitopes, the increasing demand to validate TCRs expressed on neoepitope-reactive CD4 T cells requires the implementation of large-scale T cell activation-based readout assays to complement existing multimer and cytotoxicity-based assays. Here, we present commonly used TCR validation assays, and include detailed guidance on TCR synthesis, delivery, and appropriate experimental control TCRs. We also comment on upcoming methods that hold promise for further speeding the process of TCR validation, hastening the translation of TCRs from the laboratory into the clinic.


Asunto(s)
Bioensayo/métodos , Terapia Genética/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Clonación Molecular , Electroporación/instrumentación , Electroporación/métodos , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Regulación Neoplásica de la Expresión Génica/inmunología , Genes Reporteros/genética , Humanos , Células Jurkat , Activación de Linfocitos/genética , Ratones , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Cultivo Primario de Células , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Elementos de Respuesta/genética , Linfocitos T/metabolismo , Transfección/métodos
8.
Genes Cancer ; 9(3-4): 114-129, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30108682

RESUMEN

Pancreatic adenocarcinoma is a highly aggressive malignancy with dismal prognosis and limited curative options. We investigated the influence of organ environments on gene expression in RNU rats by orthotopic and intraportal infusion of Suit2-007luc cells into the pancreas, liver and lung respectively. Tumor tissues from these sites were analyzed by chip array and histopathology. Generated data was analyzed by Chipster and Ingenuity Pathway Analysis (±1.5 expression fold change and p<0.05). Further analysis of functional annotations derived from IPA, was based on selected genes with significant modulation of expression. Comparison of groups was performed by creating ratios from the mean expression values derived from pancreas and respective in vitro values, whereas those from liver and lung were related to pancreas, respectively. Genes of interest from three functional annotations for respective organs were identified by exclusion-overlap analyses. From the resulting six genes, transglutaminase2 (TGM2) was further investigated by various assays. Its knockdown with siRNA induced dose dependent inhibitory and stimulatory effects on cell proliferation and cell migration, respectively. DNA fragmentation indicated apoptotic cell death in response to TGM2 knockdown. Cell cycle analysis by FACS showed that TGM2 knockdown induced G1/S blockade. Therefore, TGM2 and its associated genes may be promising therapeutic targets.

9.
Nat Med ; 24(8): 1192-1203, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988124

RESUMEN

The oncometabolite (R)-2-hydroxyglutarate (R-2-HG) produced by isocitrate dehydrogenase (IDH) mutations promotes gliomagenesis via DNA and histone methylation. Here, we identify an additional activity of R-2-HG: tumor cell-derived R-2-HG is taken up by T cells where it induces a perturbation of nuclear factor of activated T cells transcriptional activity and polyamine biosynthesis, resulting in suppression of T cell activity. IDH1-mutant gliomas display reduced T cell abundance and altered calcium signaling. Antitumor immunity to experimental syngeneic IDH1-mutant tumors induced by IDH1-specific vaccine or checkpoint inhibition is improved by inhibition of the neomorphic enzymatic function of mutant IDH1. These data attribute a novel, non-tumor cell-autonomous role to an oncometabolite in shaping the tumor immune microenvironment.


Asunto(s)
Glutaratos/metabolismo , Inmunidad , Linfocitos T/inmunología , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular , Glioma/genética , Glioma/inmunología , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Mutación/genética , Factores de Transcripción NFATC/metabolismo , Comunicación Paracrina , Poliaminas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
10.
PLoS Pathog ; 14(1): e1006783, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29324843

RESUMEN

Cutaneous beta human papillomavirus (HPV) types are suspected to be involved, together with ultraviolet (UV) radiation, in the development of non-melanoma skin cancer (NMSC). Studies in in vitro and in vivo experimental models have highlighted the transforming properties of beta HPV E6 and E7 oncoproteins. However, epidemiological findings indicate that beta HPV types may be required only at an initial stage of carcinogenesis, and may become dispensable after full establishment of NMSC. Here, we further investigate the potential role of beta HPVs in NMSC using a Cre-loxP-based transgenic (Tg) mouse model that expresses beta HPV38 E6 and E7 oncogenes in the basal layer of the skin epidermis and is highly susceptible to UV-induced carcinogenesis. Using whole-exome sequencing, we show that, in contrast to WT animals, when exposed to chronic UV irradiation K14 HPV38 E6/E7 Tg mice accumulate a large number of UV-induced DNA mutations, which increase proportionally with the severity of the skin lesions. The mutation pattern detected in the Tg skin lesions closely resembles that detected in human NMSC, with the highest mutation rate in p53 and Notch genes. Using the Cre-lox recombination system, we observed that deletion of the viral oncogenes after development of UV-induced skin lesions did not affect the tumour growth. Together, these findings support the concept that beta HPV types act only at an initial stage of carcinogenesis, by potentiating the deleterious effects of UV radiation.


Asunto(s)
Carcinogénesis/efectos de la radiación , Neoplasias Inducidas por Radiación/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Neoplasias Cutáneas/metabolismo , Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Proteínas Virales/metabolismo , Animales , Betapapillomavirus/metabolismo , Epidermis/metabolismo , Epidermis/patología , Epidermis/efectos de la radiación , Femenino , Eliminación de Gen , Genes p53/efectos de la radiación , Ratones , Ratones Transgénicos , Mutagénesis/efectos de la radiación , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Inducidas por Radiación/patología , Proteínas Oncogénicas Virales/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Recombinantes/metabolismo , Piel/metabolismo , Piel/patología , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/patología , Carga Tumoral/efectos de la radiación , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA