Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 40(8): 2229-2239, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33844353

RESUMEN

There are currently few suitable test systems for the chronic toxicity testing of aquatic macroinvertebrates under stream conditions. Therefore, a new test system mimicking running water conditions was developed for testing with lotic insects. This system uses small test cages, with 10 of these suspended inside each 25-L container and rotating at 0.1 m/s, to create a water flow for the individual organism inside each cage. To test the performance of the new exposure system, chronic effects (21 d) of the neonicotinoid imidacloprid were investigated with field-collected larvae of the stonefly Protonemura sp. Endpoints were survival, growth, and/or emergence (depending on the developmental stage of the larvae at the start of the exposure). Two experiments conducted 1 yr apart showed good reproducibility: growth 10% effect concentration (EC10) values were 15.3 and 18.5 µg/L and no-observed-effect concentration (NOEC) values were 30.3 and 21.5 µg/L. A third experiment, performed with further-developed larval instars, showed a significant effect of imidacloprid on emergence (with EC10 of 5.97 µg/L and NOEC of 2.89 µg/L) and a significant effect on survival (with median lethal concentration of 44.7 µg/L). The results of the present study show that the newly developed test system provides a suitable approach for toxicity testing with stonefly larvae and potentially for other lotic macroinvertebrate species. Environ Toxicol Chem 2021;40:2229-2239. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Insecticidas , Contaminantes Químicos del Agua , Animales , Insectos , Insecticidas/análisis , Larva , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Reproducibilidad de los Resultados , Agua , Contaminantes Químicos del Agua/análisis
2.
Environ Toxicol Chem ; 37(2): 318-328, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28984380

RESUMEN

To be defined as an endocrine disruptor, a substance has to meet several criteria, including the induction of specific adverse effects, a specific endocrine mode of action, and a plausible link between both. The latter criterion in particular might not always be unequivocally determined, especially because the endocrine system consists of diverse endocrine axes. The axes closely interact with each other, and manipulation of one triggers effects on the other. The present review aimed to identify some of the many interconnections between these axes. The focus was on fish, but data obtained in studies on amphibians and mammals were considered if they assisted in closing data gaps, because most of the endocrine mechanisms are evolutionarily conserved. The review includes data both from ecotoxicological studies and on physiological processes and gives information on hormone/hormone receptor interactions or gene transcription regulation. The key events and key event relationships identified provide explanations for unexpected effects on one axis, exerted by substances suspected to act specifically on another axis. Based on these data, several adverse outcome pathway (AOP) segments are identified, describing connections between the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) axes, the HPG and hypothalamic-pituitary-adrenal/interrenal (HPA/I) axes, and the HPT and HPA/I axes. Central key events identified across axes were altered aromatase activity as well as altered expression and function of the proteins 11ß-hydroxysteroid dehydrogenase (11ß-HSD) and steroidogenic acute regulatory (StAR) protein. Substance classes that act on more than one endocrine axis were, for example, goitrogens or aromatase inhibitors. Despite the wealth of information gathered, the present review only provides a few insights into the molecular nets of endocrine axes, demonstrating the complexity of their interconnections. Environ Toxicol Chem 2018;37:318-328. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Asunto(s)
Sistema Endocrino/fisiología , Animales , Ecotoxicología , Humanos , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Vertebrados/metabolismo
3.
Transl Oncol ; 10(4): 661-668, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28672194

RESUMEN

Mitochondrial dysfunction is common in cancer and the mitochondrial electron transport chain is often affected in carcinogenesis. To date, little is known about the expression of the ATP synthase subunits in clear cell renal cell carcinoma (ccRCC). The NextBio database was used to determine an expression profile of the ATP synthase subunits based on published microarray studies. We observed down-regulation of 23 out of 29 subunits of the ATP synthase. Differential expression was validated exemplarily for 12 genes (ATP5A1, ATP5B, ATPAF1, ATP5C1, ATP5D, ATP5O, ATP5F1, ATP5G1, ATP5G2, ATP5G3, ATP5I, ATP5S; screening cohort ccRCC n=18 and normal renal tissue n=10) using real-time PCR. Additional eight genes (ATP5A1, ATP5B, ATPAF1, ATP5F1, ATP5G1, ATP5G2, ATP5G3, ATP5S) were internally validated within an enlarged cohort (ccRCC n=74; normal renal tissue n=36). Furthermore, down-regulation of ATP5A1, ATPAF1, ATP5G1/G2/G3 was confirmed on the protein level using Western Blot and immunohistochemistry. We observed that altered expression of ATPAF1 and ATP5G1/G2/G3 was correlated with overall survival in patients with ccRCC. In conclusion, down-regulation of many ATP Synthase subunits occurs in ccRCC and is the basis for the reduced activity of the mitochondrial electron chain. Alteration of the expression of ATP5A1, ATPAF1, and ATP5G1/G2/G3 is characteristic for ccRCC and may be prognostic for ccRCC patients' outcome.

4.
Clin Genitourin Cancer ; 15(4): e551-e562, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28063846

RESUMEN

INTRODUCTION: Mitochondrial dysfunction is common in cancer, and the mitochondrial electron transport chain is often affected in carcinogenesis. So far, little is known about the expression of the mitochondrial complex I (NADH:ubiquinone oxidoreductase) subunits in clear-cell renal-cell carcinoma (ccRCC). MATERIALS AND METHODS: An expression profile of the mitochondrial complex I subunits was determined using the NextBio database. Subsequently, the expression of selected subunits was experimentally validated on mRNA (quantitative real-time polymerase chain reaction) and protein (Western blot analysis, immunohistochemistry) level. RESULTS: We observed that 7 subunits of the complex I were down-regulated in at least 3 microarray studies. Deregulated mRNA expression was confirmed for NDUFA3, NDUFA, NDUFB1, NDUFB9, NDUFS1, NDUFS8, and NDUFV1. Low NDUFS1 mRNA expression was a significant and independent adverse predictor of a shorter overall survival in our mRNA cohort and the ccRCC cohort of The Cancer Genome Atlas project. NDUFS1 expression was furthermore analyzed on the protein level, and a distinct down-regulation was observed in ccRCC as well as in the chromophobe and the sarcomatoid subtype compared to normal renal tissue. CONCLUSION: Expression alterations occur in only a few subunits of the mitochondrial complex I subunits in ccRCC, and altered mRNA and protein expression levels of NDUFS1 may be useful to distinguish between renal-cell carcinoma and normal renal tissue.


Asunto(s)
Carcinoma de Células Renales/patología , Neoplasias Renales/patología , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Pronóstico , Análisis de Supervivencia
5.
Oncotarget ; 7(52): 86490-86499, 2016 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-27845902

RESUMEN

Mitochondrial dysfunction is common in cancer, and the mitochondrial electron transport chain is often affected in carcinogenesis. So far, few is known about the expression of the mitochondrial complex III (ubiquinol-cytochrome c reductase complex) subunits in clear cell renal cell carcinoma (ccRCC). In this study, the NextBio database was used to determine an expression profile of the mitochondrial complex III subunits based on published microarray studies. We observed that five out of 11 subunits of the complex III were downregulated in at least three microarray studies. The decreased mRNA expression level of UQCRFS1 and UQCRC1 in ccRCC was confirmed using PCR. Low mRNA levels UQCRC1 were also correlated with a shorter period of cancer-specific and overall survival. Furthermore, UQCRFS1 and UQCRC1 were also decreased in ccRCC on the protein level as determined using Western blotting and immunohistochemistry. UQCRC1 protein expression was also lower in ccRCC than in papillary and chromophobe subtypes. Analyzing gene expression and DNA methylation in The Cancer Genome Atlas cohort revealed an inverse correlation of gene expression and DNA methylation, suggesting that DNA hypermethylation is regulating the expression of UQCRC1 and UQCRFS1. Taken together, our data implicate that dysregulated UQCRC1 and UQCRFS1 are involved in impaired mitochondrial electron transport chain function.


Asunto(s)
Carcinoma de Células Renales/enzimología , Complejo III de Transporte de Electrones/genética , Proteínas Hierro-Azufre/genética , Neoplasias Renales/enzimología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/mortalidad , Metilación de ADN , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/mortalidad , Masculino , Persona de Mediana Edad , Subunidades de Proteína , ARN Mensajero/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...