Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EJNMMI Radiopharm Chem ; 9(1): 3, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180574

RESUMEN

BACKGROUND: There are only a handful of true theranostic matched pairs, and in particular the theranostic radiocopper trio 61Cu, 64Cu and 67Cu, for diagnosis and therapy respectively, is a very attractive candidate. In fact, the alternative of two imaging radionuclides with different half-lives is a clear advantage over other theranostic pairs, since it offers a better matching for the tracer biological and radionuclide physical half-lives. Due to the high availability of 64Cu, its translation into the clinic is being successfully carried out, giving the example of the FDA approved radiopharmaceutical Detectnet (copper Cu 64 dotatate injection). However, a shorter-lived PET radionuclide such as 61Cu may as well be beneficial. RESULTS: Proton irradiation of enriched 62Ni electrodeposited targets with a compact cyclotron produced the desired radionuclide via the 62Ni(p,2n)61Cu nuclear reaction, leading to 61Cu activities of up to 20 GBq at end of bombardment and 8 GBq at end of purification. Furthermore, two purification methods are compared leading to comparable results regarding separation yield and product purity. Following the radiochemical separation, quality assessment of this product [61Cu]CuCl2 solution proved radionuclidic purities (RNP) over 99.6% and apparent molar activities (AMA) of 260 GBq/µmol with the 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA) chelator, end of purification corrected. CONCLUSIONS: In the current article a comprehensive novel production method for the PET radionuclide 61Cu is presented, providing an alternative to the most popular production routes. Characterization of the [61Cu]CuCl2 product showed both high RNP as well as high AMA, proving that the produced activity presented high quality regarding radiolabeling up to 9 h after end of purification. Furthermore, production scalability could be easily achieved by increasing the irradiation time.

2.
Inorg Chem ; 62(50): 20754-20768, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37707798

RESUMEN

Octadentate and specifically nonadentate ligands with a bispidine scaffold (3,7-diazabicyclo[3.3.1]nonane) are known to be efficiently coordinated to a range of metal ions of interest in radiopharmaceutical chemistry and lead to exceedingly stable and inert complexes. Nonadentate bispidine L2 (with a tridentate bipyridine acetate appended to N3 and a picolinate at N7) has been shown before to be an ideal chelator for 111In3+, 177Lu3+, and 225Ac3+, nuclides of interest for diagnosis and therapy, and a proof-of-principle study with an SSTR2-specific octreotate has shown potential for theranostic applications. We now have extended these studies in two directions. First, we present ligand derivative L3, in which the bipyridine acetate is substituted with terpyridine, a softer donor for metal ions with a preference for more covalency. L3 did not fulfill the hopes because complexation is much less efficient. While for Bi3+ and Pb2+ the ligand is an excellent chelator with properties similar to those of L2, Lu3+ and La3+ show very slow and inefficient complexation with L3 in contrast to L2, and 225Ac3+ is not fully coordinated, even at an increased temperature (92% radiochemical yield at 80 °C, 60 min, [L3] = 10-4 M). These observations have led to a hypothesis for the complexation pathway that is in line with all of the experimental data and supported by a preliminary density functional theory analysis, which is important for the design of further optimized bispidine chelators. Second, the coordination chemistry of L2 has been extended to Bi3+, La3+, and Pb2+, including solid state and solution structural work, complex stabilities, radiolabeling, and radiostability studies. All complexes of this ligand (La3+, Ac3+, Lu3+, Bi3+, In3+, and Pb2+), including nuclides for targeted α therapy (TAT), single-photon emission computed tomography, and positron emission tomography, are formed efficiently under physiological conditions, i.e., suitable for the labeling of delicate biological vectors such as antibodies, and the complexes are very stable and inert. Importantly, for TAT with 225Ac, the daughter nuclides 213Bi and 209Pb also form stable complexes, and this is important for reducing damage to healthy tissue.


Asunto(s)
Elementos de Series Actinoides , Elementos de la Serie de los Lantanoides , Quelantes/química , Radiofármacos/química , Elementos de la Serie de los Lantanoides/química , Ligandos , Plomo , Iones/química , Acetatos
3.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37259458

RESUMEN

Theranostic matched pairs of radionuclides have aroused interest during the last couple of years, and in that sense, copper is one element that has a lot to offer, and although 61Cu and 64Cu are slowly being established as diagnostic radionuclides for PET, the availability of the therapeutic counterpart 67Cu plays a key role for further radiopharmaceutical development in the future. Until now, the 67Cu shortage has not been solved; however, different production routes are being explored. This project aims at the production of no-carrier-added 67Cu with high radionuclidic purity with a medical 30MeV compact cyclotron via the 70Zn(p,α)67Cu reaction. With this purpose, proton irradiation of electrodeposited 70Zn targets was performed followed by two-step radiochemical separation based on solid-phase extraction. Activities of up to 600MBq 67Cu at end of bombardment, with radionuclidic purities over 99.5% and apparent molar activities of up to 80MBq/nmol, were quantified.

4.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36297279

RESUMEN

Targeted Alpha Therapy is a research field of highest interest in specialized radionuclide therapy. Over the last decades, several alpha-emitting radionuclides have entered and left research topics towards their clinical translation. Especially, 225Ac provides all necessary physical and chemical properties for a successful clinical application, which has already been shown by [225Ac]Ac-PSMA-617. While PSMA-617 carries the DOTA moiety as the complexing agent, the chelator macropa as a macrocyclic alternative provides even more beneficial properties regarding labeling and complex stability in vivo. Lanthanum-133 is an excellent positron-emitting diagnostic lanthanide to radiolabel macropa-functionalized therapeutics since 133La forms a perfectly matched theranostic pair of radionuclides with the therapeutic radionuclide 225Ac, which itself can optimally be complexed by macropa as well. 133La was thus produced by cyclotron-based proton irradiation of an enriched 134Ba target. The target (30 mg of [134Ba]BaCO3) was irradiated for 60 min at 22 MeV and 10−15 µA beam current. Irradiation side products in the raw target solution were identified and quantified: 135La (0.4%), 135mBa (0.03%), 133mBa (0.01%), and 133Ba (0.0004%). The subsequent workup and anion-exchange-based product purification process took approx. 30 min and led to a total amount of (1.2−1.8) GBq (decay-corrected to end of bombardment) of 133La, formulated as [133La]LaCl3. After the complete decay of 133La, a remainder of ca. 4 kBq of long-lived 133Ba per 100 MBq of 133La was detected and rated as uncritical regarding personal dose and waste management. Subsequent radiolabeling was successfully performed with previously published macropa-derived PSMA inhibitors at a micromolar range (quantitative labeling at 1 µM) and evaluated by radio-TLC and radio-HPLC analyses. The scale-up to radioactivity amounts that are needed for clinical application purposes would be easy to achieve by increasing target mass, beam current, and irradiation time to produce 133La of high radionuclide purity (>99.5%) regarding labeling properties and side products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...