Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 64(2): 221-235, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768871

RESUMEN

Autophagy is a potent cellular degradation pathway, and its activation needs to be tightly controlled. Cargo receptors mediate selectivity during autophagy by bringing cargo to the scaffold protein Atg11 and, in turn, to the autophagic machinery, including the central autophagy kinase Atg1. Here we show how selective autophagy is tightly regulated in space and time to prevent aberrant Atg1 kinase activation and autophagy induction. We established an induced bypass approach (iPass) that combines genetic deletion with chemically induced dimerization to evaluate the roles of Atg13 and cargo receptors in Atg1 kinase activation and selective autophagy progression. We show that Atg1 activation does not require cargo receptors, cargo-bound Atg11, or Atg13 per se. Rather, these proteins function in two independent pathways that converge to activate Atg1 at the vacuole. This pathway architecture underlies the spatiotemporal control of Atg1 kinase activity, thereby preventing inappropriate autophagosome formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Relacionadas con la Autofagia/genética , Autofagia/genética , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Fagosomas/metabolismo , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
Genome Med ; 8(1): 67, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27306058

RESUMEN

BACKGROUND: Roux-en-Y gastric bypass (RYGB) is an effective means to achieve sustained weight loss for morbidly obese individuals. Besides rapid weight reduction, patients achieve major improvements of insulin sensitivity and glucose homeostasis. Dysbiosis of gut microbiota has been associated with obesity and some of its co-morbidities, like type 2 diabetes, and major changes of gut microbial communities have been hypothesized to mediate part of the beneficial metabolic effects observed after RYGB. Here we describe changes in gut microbial taxonomic composition and functional potential following RYGB. METHODS: We recruited 13 morbidly obese patients who underwent RYGB, carefully phenotyped them, and had their gut microbiomes quantified before (n = 13) and 3 months (n = 12) and 12 months (n = 8) after RYGB. Following shotgun metagenomic sequencing of the fecal microbial DNA purified from stools, we characterized the gut microbial composition at species and gene levels followed by functional annotation. RESULTS: In parallel with the weight loss and metabolic improvements, gut microbial diversity increased within the first 3 months after RYGB and remained high 1 year later. RYGB led to altered relative abundances of 31 species (P < 0.05, q < 0.15) within the first 3 months, including those of Escherichia coli, Klebsiella pneumoniae, Veillonella spp., Streptococcus spp., Alistipes spp., and Akkermansia muciniphila. Sixteen of these species maintained their altered relative abundances during the following 9 months. Interestingly, Faecalibacterium prausnitzii was the only species that decreased in relative abundance. Fifty-three microbial functional modules increased their relative abundance between baseline and 3 months (P < 0.05, q < 0.17). These functional changes included increased potential (i) to assimilate multiple energy sources using transporters and phosphotransferase systems, (ii) to use aerobic respiration, (iii) to shift from protein degradation to putrefaction, and (iv) to use amino acids and fatty acids as energy sources. CONCLUSIONS: Within 3 months after morbidly obese individuals had undergone RYGB, their gut microbiota featured an increased diversity, an altered composition, an increased potential for oxygen tolerance, and an increased potential for microbial utilization of macro- and micro-nutrients. These changes were maintained for the first year post-RYGB. TRIAL REGISTRATION: Current controlled trials (ID NCT00810823 , NCT01579981 , and NCT01993511 ).


Asunto(s)
Anastomosis en-Y de Roux , Bacterias/clasificación , Microbioma Gastrointestinal , Obesidad Mórbida/microbiología , Obesidad Mórbida/cirugía , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Heces/microbiología , Femenino , Humanos , Estudios Longitudinales , Masculino , Metagenómica , Análisis de Secuencia de ADN , Resultado del Tratamiento , Pérdida de Peso
3.
EMBO Rep ; 15(8): 862-70, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24968893

RESUMEN

Autophagy is the major pathway for the delivery of cytoplasmic material to the vacuole or lysosome. Selective autophagy is mediated by cargo receptors, which link the cargo to the scaffold protein Atg11 and to Atg8 family proteins on the forming autophagosomal membrane. We show that the essential kinase Hrr25 activates the cargo receptor Atg19 by phosphorylation, which is required to link cargo to the Atg11 scaffold, allowing selective autophagy to proceed. We also find that the Atg34 cargo receptor is regulated in a similar manner, suggesting a conserved mechanism.


Asunto(s)
Quinasa de la Caseína I/fisiología , Receptores de Superficie Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Autofagia , Proteínas Relacionadas con la Autofagia , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Receptores de Superficie Celular/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química
4.
Curr Biol ; 24(5): 548-54, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24530066

RESUMEN

Clathrin-mediated endocytosis is driven by a complex machinery of proteins, which assemble in a regular order at the plasma membrane. The assembly of the endocytic machinery is conventionally thought to be a continuous process of mechanistically dependent steps, starting from a defined initiation step. Indeed, several initiation mechanisms involving single proteins have been proposed in mammalian cells. Here, we demonstrate that the initiation mechanism of endocytosis is highly flexible. We disrupted the long early phase of endocytosis in yeast by deleting seven genes encoding early endocytic proteins. Surprisingly, membrane uptake and vesicle budding dynamics were largely normal in these mutant cells. Regulated cargo recruitment was, however, defective. In addition, different early endocytic proteins were able to initiate vesicle budding when anchored to a plasma membrane domain where endocytosis does not normally take place. Our results suggest that the cargo-recruiting early phase is not mechanistically required for vesicle budding, but early-arriving proteins can recruit the budding machinery into position at the plasma membrane. Separable early and late phases allow for a robust process of vesicle budding to follow from variable initiation mechanisms. Such a modular design could easily adapt and evolve to respond to different cellular requirements.


Asunto(s)
Clatrina/metabolismo , Endocitosis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Imagen Molecular/métodos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
5.
PLoS One ; 8(5): e62195, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658712

RESUMEN

Over the last decades there has been an explosion of new methodologies to study protein complexes. However, most of the approaches currently used are based on in vitro assays (e.g. nuclear magnetic resonance, X-ray, electron microscopy, isothermal titration calorimetry etc). The accurate measurement of parameters that define protein complexes in a physiological context has been largely limited due to technical constrains. Here, we present PICT (Protein interactions from Imaging of Complexes after Translocation), a new method that provides a simple fluorescence microscopy readout for the study of protein complexes in living cells. We take advantage of the inducible dimerization of FK506-binding protein (FKBP) and FKBP-rapamycin binding (FRB) domain to translocate protein assemblies to membrane associated anchoring platforms in yeast. In this assay, GFP-tagged prey proteins interacting with the FRB-tagged bait will co-translocate to the FKBP-tagged anchor sites upon addition of rapamycin. The interactions are thus encoded into localization changes and can be detected by fluorescence live-cell imaging under different physiological conditions or upon perturbations. PICT can be automated for high-throughput studies and can be used to quantify dissociation rates of protein complexes in vivo. In this work we have used PICT to analyze protein-protein interactions from three biological pathways in the yeast Saccharomyces cerevisiae: Mitogen-activated protein kinase cascade (Ste5-Ste11-Ste50), exocytosis (exocyst complex) and endocytosis (Ede1-Syp1).


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Endocitosis , Exocitosis , Recuperación de Fluorescencia tras Fotoblanqueo , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Microscopía Fluorescente , Complejos Multiproteicos/metabolismo , Mapas de Interacción de Proteínas , Multimerización de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual , Proteínas de Transporte Vesicular/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(38): E2533-42, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22927393

RESUMEN

Dynamic actin filaments are a crucial component of clathrin-mediated endocytosis when endocytic proteins cannot supply enough energy for vesicle budding. Actin cytoskeleton is thought to provide force for membrane invagination or vesicle scission, but how this force is transmitted to the plasma membrane is not understood. Here we describe the molecular mechanism of plasma membrane-actin cytoskeleton coupling mediated by cooperative action of epsin Ent1 and the HIP1R homolog Sla2 in yeast Saccharomyces cerevisiae. Sla2 anchors Ent1 to a stable endocytic coat by an unforeseen interaction between Sla2's ANTH and Ent1's ENTH lipid-binding domains. The ANTH and ENTH domains bind each other in a ligand-dependent manner to provide critical anchoring of both proteins to the membrane. The C-terminal parts of Ent1 and Sla2 bind redundantly to actin filaments via a previously unknown phospho-regulated actin-binding domain in Ent1 and the THATCH domain in Sla2. By the synergistic binding to the membrane and redundant interaction with actin, Ent1 and Sla2 form an essential molecular linker that transmits the force generated by the actin cytoskeleton to the plasma membrane, leading to membrane invagination and vesicle budding.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Clatrina/metabolismo , Citoesqueleto/metabolismo , Endocitosis , Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Membrana Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Glutatión Transferasa/metabolismo , Lípidos/química , Modelos Biológicos , Fenotipo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
7.
J Cell Sci ; 124(Pt 3): 328-37, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21224391

RESUMEN

The Saccharomyces cerevisiae plasma membrane has been proposed to contain two stably distributed domains. One of these domains, known as MCC (membrane compartment of Can1) or eisosomes, consists of furrow-like membrane invaginations and associated proteins. The other domain, called MCP (membrane compartment of Pma1), consists of the rest of the membrane area surrounding the MCC patches. The role of this plasma membrane domain organization in endocytosis is under debate. Here we show by live-cell imaging that vesicular traffic is restricted to the MCP and the distribution of endocytic and exocytic sites within the MCP is independent of the MCC patch positions. Photobleaching experiments indicated that Can1 and Tat2, two MCC-enriched permeases, exchange quickly between the two domains. Total internal reflection fluorescence and epi-fluorescence microscopy showed that the enrichment of Can1 at the MCC persisted after addition of its substrate, whereas the enrichment of Tat2 disappeared within 90 seconds. The rates of stimulated endocytosis of Can1 as well as Tat2 were similar in both wild-type cells and pil1Δ cells, which lack the MCC. Thus, our data suggest that the enrichment of certain plasma membrane proteins in the MCC does not regulate the rate of their endocytosis.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Endocitosis , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Microscopía Fluorescente
8.
Proc Natl Acad Sci U S A ; 107(5): 2331-6, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20080670

RESUMEN

In Arabidopsis thaliana, biosynthesis of the essential thiol antioxidant, glutathione (GSH), is plastid-regulated, but many GSH functions, including heavy metal detoxification and plant defense activation, depend on cytosolic GSH. This finding suggests that plastid and cytosol thiol pools are closely integrated and we show that in Arabidopsis this integration requires a family of three plastid thiol transporters homologous to the Plasmodium falciparum chloroquine-resistance transporter, PfCRT. Arabidopsis mutants lacking these transporters are heavy metal-sensitive, GSH-deficient, and hypersensitive to Phytophthora infection, confirming a direct requirement for correct GSH homeostasis in defense responses. Compartment-specific measurements of the glutathione redox potential using redox-sensitive GFP showed that knockout of the entire transporter family resulted in a more oxidized glutathione redox potential in the cytosol, but not in the plastids, indicating the GSH-deficient phenotype is restricted to the cytosolic compartment. Expression of the transporters in Xenopus oocytes confirmed that each can mediate GSH uptake. We conclude that these transporters play a significant role in regulating GSH levels and the redox potential of the cytosol.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Glutatión/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Animales , Antimaláricos/farmacología , Cadmio/farmacología , Cloroquina/farmacología , Resistencia a Medicamentos , Femenino , Genes de Plantas , Homeostasis , Técnicas In Vitro , Modelos Biológicos , Mutación , Oocitos/metabolismo , Plantas Modificadas Genéticamente , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrés Fisiológico , Xenopus
9.
Plant J ; 57(3): 534-41, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18939964

RESUMEN

We present a novel method to experimentally visualize in vivo the topology of transmembrane proteins residing in the endoplasmic reticulum (ER) membrane or passing through the secretory pathway on their way to their final destination. This approach, so-called redox-based topology analysis (ReTA), is based on fusion of transmembrane proteins with redox-sensitive GFP (roGFP) and ratiometric imaging. The ratio images provide direct information on the orientation of roGFP relative to the membrane as the roGFP fluorescence alters with changes in the glutathione redox potential across the ER membrane. As proof of concept, we produced binary read-outs using oxidized roGFP inside the ER lumen and reduced roGFP on the cytosolic side of the membrane for both N- and C-terminal fusions of single and multi-spanning membrane proteins. Further, successive deletion of hydrophobic domains from the C-terminus of the K/HDEL receptor ERD2 resulted in alternating localization of roGFP and a topology model for AtERD2 with six transmembrane domains.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/química , Vías Secretoras , Glutatión/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Oxidación-Reducción , Proteínas de Plantas/química , Nicotiana/metabolismo
10.
Methods Mol Biol ; 479: 93-107, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19083173

RESUMEN

Continuous control of metabolism and development is a key feature of life and is of particular importance under stress conditions. While under normal conditions most cellular compartments maintain a reducing environment, the cellular redox state can be influenced by external factors. Redox changes might in turn be employed as part of a signalling cascade leading to molecular responses to adverse situations. To enable dynamic measurements of the cellular redox poise in vivo, reduction-oxidation sensitive GFP (roGFP) can be expressed in plant cells and observed by confocal microscopy. When imaged by confocal microscopy this probe exhibits significant opposing shifts in the fluorescence intensities excited at 488 and 405 nm upon formation of an intramolecular disulfide bridge, which enables ratiometric analysis. The formation of the disulfide bridge is directly responsive to the redox state of the glutathione redox buffer within the subcellular compartment to which roGFP is targeted.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal/métodos , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Disulfuros/metabolismo , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Proteínas Fluorescentes Verdes/genética , Cinética , Oxidación-Reducción , Estrés Oxidativo , Plantas/genética
11.
Nat Methods ; 5(6): 553-9, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18469822

RESUMEN

Dynamic analysis of redox-based processes in living cells is now restricted by the lack of appropriate redox biosensors. Conventional redox-sensitive GFPs (roGFPs) are limited by undefined specificity and slow response to changes in redox potential. In this study we demonstrate that the fusion of human glutaredoxin-1 (Grx1) to roGFP2 facilitates specific real-time equilibration between the sensor protein and the glutathione redox couple. The Grx1-roGFP2 fusion protein allowed dynamic live imaging of the glutathione redox potential (E(GSH)) in different cellular compartments with high sensitivity and temporal resolution. The biosensor detected nanomolar changes in oxidized glutathione (GSSG) against a backdrop of millimolar reduced glutathione (GSH) on a scale of seconds to minutes. It facilitated the observation of redox changes associated with growth factor availability, cell density, mitochondrial depolarization, respiratory burst activity and immune receptor stimulation.


Asunto(s)
Biotecnología/métodos , Glutatión/química , Oxidación-Reducción , Apoptosis , Técnicas Biosensibles , Disulfuros/química , Glutarredoxinas/química , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Mitocondrias/metabolismo , Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/química , Sensibilidad y Especificidad , Tiorredoxinas/química
12.
Plant J ; 52(5): 973-86, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17892447

RESUMEN

The cellular glutathione redox buffer is assumed to be part of signal transduction pathways transmitting environmental signals during biotic and abiotic stress, and thus is essential for regulation of metabolism and development. Ratiometric redox-sensitive GFP (roGFP) expressed in Arabidopsis thaliana reversibly responds to redox changes induced by incubation with H(2)O(2) or DTT. Kinetic analysis of these redox changes, combined with detailed characterization of roGFP2 in vitro, shows that roGFP2 expressed in the cytosol senses the redox potential of the cellular glutathione buffer via glutaredoxin (GRX) as a mediator of reversible electron flow between glutathione and roGFP2. The sensitivity of roGFP2 toward the glutathione redox potential was tested in vivo through manipulating the glutathione (GSH) content of wild-type plants, through expression of roGFP2 in the cytosol of low-GSH mutants and the endoplasmic reticulum (ER) of wild-type plants, as well as through wounding as an example for stress-induced redox changes. Provided the GSH concentration is known, roGFP2 facilitates the determination of the degree of oxidation of the GSH solution. Assuming sufficient glutathione reductase activity and non-limiting NADPH supply, the observed almost full reduction of roGFP2 in vivo suggests that a 2.5 mm cytosolic glutathione buffer would contain only 25 nm oxidized glutathione disulfide (GSSG). The high sensitivity of roGFP2 toward GSSG via GRX enables the use of roGFP2 for monitoring stress-induced redox changes in vivo in real time. The results with roGFP2 as an artificial GRX target further suggest that redox-triggered changes of biologic processes might be linked directly to the glutathione redox potential via GRX as the mediator.


Asunto(s)
Arabidopsis/genética , Glutatión/metabolismo , Proteínas Fluorescentes Verdes/análisis , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Técnicas Biosensibles , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Glutarredoxinas/metabolismo , Proteínas Fluorescentes Verdes/química , Cinética , Microscopía Confocal , Oxidación-Reducción
13.
J Exp Bot ; 57(1): 43-50, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16207749

RESUMEN

Components of the plant cell secretory pathway, including the endoplasmic reticulum and Golgi apparatus, are in constant motion. The photoactivation of GFP has been used to determine that proteins within the membrane of the ER flow as the ER is remodelled. Measurement of the rate at which activated GFP moves away from the activation spot shows that this motion is much faster than would be expected if membrane components moved simply by diffusion. Treatment with latrunculin to depolymerize the actin cytoskeleton stops ER remodelling and reduces the rate of GFP movement to that expected from diffusion alone. This suggests that myosin binds directly or indirectly to ER membrane proteins and actively moves them around over the actin scaffold. Tracking of Golgi body movement was used to demonstrate that they move at the same rate and in the same direction as do photoactivated ER surface proteins. Golgi bodies, therefore, move with, and not over, the surface of the ER. These observations support the current theory of continuity between Golgi bodies and discrete ER exit sites in the ER membrane.


Asunto(s)
Retículo Endoplásmico/fisiología , Membranas Intracelulares/fisiología , Proteínas de la Membrana/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Aparato de Golgi/fisiología , Proteínas Fluorescentes Verdes/química , Procesamiento de Imagen Asistido por Computador , Fluidez de la Membrana , Movimiento , Fotoquímica , Programas Informáticos , Tiazoles/farmacología , Tiazolidinas , Nicotiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...