Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Genom ; 3(3): 100276, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36950387

RESUMEN

In contrast to mono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution. Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrichment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malignancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level understanding of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the tissue-specific effects of non-coding mutations.

2.
PLoS One ; 17(7): e0270710, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35802654

RESUMEN

Profiling the adaptive immune repertoire using next generation sequencing (NGS) has become common in human medicine, showing promise in characterizing clonal expansion of B cell clones through analysis of B cell receptors (BCRs) in patients with lymphoid malignancies. In contrast, most work evaluating BCR repertoires in dogs has employed traditional PCR-based approaches analyzing the IGH locus only. The objectives of this study were to: (1) describe a novel NGS protocol to evaluate canine BCRs; (2) develop a bioinformatics pipeline for processing canine BCR sequencing data; and (3) apply these methods to derive insights into BCR repertoires of healthy dogs and dogs undergoing treatment for B-cell lymphoma. RNA from peripheral blood mononuclear cells of healthy dogs (n = 25) and dogs newly diagnosed with intermediate-to-large B-cell lymphoma (n = 18) with intent to pursue chemotherapy was isolated, converted into cDNA and sequenced by NGS. The BCR repertoires were identified and quantified using a novel analysis pipeline. The IGK repertoires of the healthy dogs were far less diverse compared to IGL which, as with IGH, was highly diverse. Strong biases at key positions within the CDR3 sequence were identified within the healthy dog BCR repertoire. For a subset of the dogs with B-cell lymphoma, clonal expansion of specific IGH sequences pre-treatment and reduction post-treatment was observed. The degree of expansion and reduction correlated with the clinical outcome in this subset. Future studies employing these techniques may improve disease monitoring, provide earlier recognition of disease progression, and ultimately lead to more targeted therapeutics.


Asunto(s)
Biología Computacional , Linfoma de Células B , Animales , Perros , Secuenciación de Nucleótidos de Alto Rendimiento , Leucocitos Mononucleares , Receptores de Antígenos de Linfocitos B/genética
3.
Nat Commun ; 13(1): 3422, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701408

RESUMEN

Repair of Cas9-induced double-stranded breaks results primarily in formation of small insertions and deletions (indels), but can also cause potentially harmful large deletions. While mechanisms leading to the creation of small indels are relatively well understood, very little is known about the origins of large deletions. Using a library of clonal NGS-validated mouse embryonic stem cells deficient for 32 DNA repair genes, we have shown that large deletion frequency increases in cells impaired for non-homologous end joining and decreases in cells deficient for the central resection gene Nbn and the microhomology-mediated end joining gene Polq. Across deficient clones, increase in large deletion frequency was closely correlated with the increase in the extent of microhomology and the size of small indels, implying a continuity of repair processes across different genomic scales. Furthermore, by targeting diverse genomic sites, we identified examples of repair processes that were highly locus-specific, discovering a role for exonuclease Trex1. Finally, we present evidence that indel sizes increase with the overall efficiency of Cas9 mutagenesis. These findings may have impact on both basic research and clinical use of CRISPR-Cas9, in particular in conjunction with repair pathway modulation.


Asunto(s)
Sistemas CRISPR-Cas , Roturas del ADN de Doble Cadena , Animales , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Mutación INDEL , Ratones
4.
Cell Metab ; 34(1): 106-124.e10, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986329

RESUMEN

Still's disease, the paradigm of autoinflammation-cum-autoimmunity, predisposes for a cytokine storm with excessive T lymphocyte activation upon viral infection. Loss of function of the purine nucleoside enzyme FAMIN is the sole known cause for monogenic Still's disease. Here we discovered that a FAMIN-enabled purine metabolon in dendritic cells (DCs) restrains CD4+ and CD8+ T cell priming. DCs with absent FAMIN activity prime for enhanced antigen-specific cytotoxicity, IFNγ secretion, and T cell expansion, resulting in excessive influenza A virus-specific responses. Enhanced priming is already manifest with hypomorphic FAMIN-I254V, for which ∼6% of mankind is homozygous. FAMIN controls membrane trafficking and restrains antigen presentation in an NADH/NAD+-dependent manner by balancing flux through adenine-guanine nucleotide interconversion cycles. FAMIN additionally converts hypoxanthine into inosine, which DCs release to dampen T cell activation. Compromised FAMIN consequently enhances immunosurveillance of syngeneic tumors. FAMIN is a biochemical checkpoint that protects against excessive antiviral T cell responses, autoimmunity, and autoinflammation.


Asunto(s)
Autoinmunidad , Purinas , Linfocitos T CD8-positivos , Células Dendríticas , Activación de Linfocitos , Purinas/metabolismo
5.
Mol Cell ; 81(16): 3323-3338.e14, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34352207

RESUMEN

The emerging "epitranscriptomics" field is providing insights into the biological and pathological roles of different RNA modifications. The RNA methyltransferase METTL1 catalyzes N7-methylguanosine (m7G) modification of tRNAs. Here we find METTL1 is frequently amplified and overexpressed in cancers and is associated with poor patient survival. METTL1 depletion causes decreased abundance of m7G-modified tRNAs and altered cell cycle and inhibits oncogenicity. Conversely, METTL1 overexpression induces oncogenic cell transformation and cancer. Mechanistically, we find increased abundance of m7G-modified tRNAs, in particular Arg-TCT-4-1, and increased translation of mRNAs, including cell cycle regulators that are enriched in the corresponding AGA codon. Accordingly, Arg-TCT expression is elevated in many tumor types and is associated with patient survival, and strikingly, overexpression of this individual tRNA induces oncogenic transformation. Thus, METTL1-mediated tRNA modification drives oncogenic transformation through a remodeling of the mRNA "translatome" to increase expression of growth-promoting proteins and represents a promising anti-cancer target.


Asunto(s)
Carcinogénesis/genética , Metiltransferasas/genética , Neoplasias/genética , ARNt Metiltransferasas/genética , Guanosina/análogos & derivados , Guanosina/genética , Humanos , Metilación , Neoplasias/patología , Oncogenes/genética , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/genética , ARN de Transferencia/genética
6.
Genes Dev ; 35(15-16): 1109-1122, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34301766

RESUMEN

Lung adenocarcinoma, the most prevalent lung cancer subtype, is characterized by its high propensity to metastasize. Despite the importance of metastasis in lung cancer mortality, its underlying cellular and molecular mechanisms remain largely elusive. Here, we identified miR-200 miRNAs as potent suppressors for lung adenocarcinoma metastasis. miR-200 expression is specifically repressed in mouse metastatic lung adenocarcinomas, and miR-200 decrease strongly correlates with poor patient survival. Consistently, deletion of mir-200c/141 in the KrasLSL-G12D/+ ; Trp53flox/flox lung adenocarcinoma mouse model significantly promoted metastasis, generating a desmoplastic tumor stroma highly reminiscent of metastatic human lung cancer. miR-200 deficiency in lung cancer cells promotes the proliferation and activation of adjacent cancer-associated fibroblasts (CAFs), which in turn elevates the metastatic potential of cancer cells. miR-200 regulates the functional interaction between cancer cells and CAFs, at least in part, by targeting Notch ligand Jagged1 and Jagged2 in cancer cells and inducing Notch activation in adjacent CAFs. Hence, the interaction between cancer cells and CAFs constitutes an essential mechanism to promote metastatic potential.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Pulmonares , MicroARNs , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Metástasis de la Neoplasia/patología
7.
Cancer Discov ; 11(12): 3158-3177, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34282029

RESUMEN

Biliary tract cancer ranks among the most lethal human malignancies, representing an unmet clinical need. Its abysmal prognosis is tied to an increasing incidence and a fundamental lack of mechanistic knowledge regarding the molecular basis of the disease. Here, we show that the Pdx1-positive extrahepatic biliary epithelium is highly susceptible toward transformation by activated PIK3CAH1047R but refractory to oncogenic KrasG12D. Using genome-wide transposon screens and genetic loss-of-function experiments, we discover context-dependent genetic interactions that drive extrahepatic cholangiocarcinoma (ECC) and show that PI3K signaling output strength and repression of the tumor suppressor p27Kip1 are critical context-specific determinants of tumor formation. This contrasts with the pancreas, where oncogenic Kras in concert with p53 loss is a key cancer driver. Notably, inactivation of p27Kip1 permits KrasG12D-driven ECC development. These studies provide a mechanistic link between PI3K signaling, tissue-specific tumor suppressor barriers, and ECC pathogenesis, and present a novel genetic model of autochthonous ECC and genes driving this highly lethal tumor subtype. SIGNIFICANCE: We used the first genetically engineered mouse model for extrahepatic bile duct carcinoma to identify cancer genes by genome-wide transposon-based mutagenesis screening. Thereby, we show that PI3K signaling output strength and p27Kip1 function are critical determinants for context-specific ECC formation. This article is highlighted in the In This Issue feature, p. 2945.


Asunto(s)
Neoplasias de los Conductos Biliares , Neoplasias del Sistema Biliar , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Neoplasias del Sistema Biliar/genética , Genes Supresores de Tumor , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/genética
9.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753502

RESUMEN

Genetic variation within the factor H-related (FHR) genes is associated with the complement-mediated kidney disease, C3 glomerulopathy (C3G). There is no definitive treatment for C3G, and a significant proportion of patients develop end-stage renal disease. The prototypical example is CFHR5 nephropathy, through which an internal duplication within a single CFHR5 gene generates a mutant FHR5 protein (FHR5mut) that leads to accumulation of complement C3 within glomeruli. To elucidate how abnormal FHR proteins cause C3G, we modeled CFHR5 nephropathy in mice. Animals lacking the murine factor H (FH) and FHR proteins, but coexpressing human FH and FHR5mut (hFH-FHR5mut), developed glomerular C3 deposition, whereas mice coexpressing human FH with the normal FHR5 protein (hFH-FHR5) did not. Like in patients, the FHR5mut had a dominant gain-of-function effect, and when administered in hFH-FHR5 mice, it triggered C3 deposition. Importantly, adeno-associated virus vector-delivered homodimeric mini-FH, a molecule with superior surface C3 binding compared to FH, reduced glomerular C3 deposition in the presence of the FHR5mut. Our data demonstrate that FHR5mut causes C3G by disrupting the homeostatic regulation of complement within the kidney and is directly pathogenic in C3G. These results support the use of FH-derived molecules with enhanced C3 binding for treating C3G associated with abnormal FHR proteins. They also suggest that targeting FHR5 represents a way to treat complement-mediated kidney injury.


Asunto(s)
Complemento C3/metabolismo , Proteínas del Sistema Complemento/genética , Mutación con Ganancia de Función , Glomerulonefritis/genética , Glomerulonefritis/metabolismo , Glomérulos Renales/patología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Glomérulos Renales/metabolismo , Masculino , Ratones , Ratones Transgénicos , Factores Sexuales
12.
Genome Biol ; 21(1): 204, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32811551

RESUMEN

Human cancers harbor substantial genetic, epigenetic, and transcriptional changes, only some of which drive oncogenesis at certain times during cancer evolution. Identifying the cancer-driver alterations amongst the vast swathes of "passenger" changes still remains a major challenge. Transposon and CRISPR screens in vivo provide complementary methods for achieving this, and each platform has its own advantages. Here, we review recent major technological breakthroughs made with these two approaches and highlight future directions. We discuss how each genetic screening platform can provide unique insight into cancer evolution, including intra-tumoral heterogeneity, metastasis, and immune evasion, presenting transformative opportunities for targeted therapeutic intervention.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genes Relacionados con las Neoplasias , Neoplasias/genética , Animales , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Elementos Transponibles de ADN , Pruebas Genéticas , Humanos , Inmunoterapia , Mutagénesis , Metástasis de la Neoplasia
13.
Genome Biol ; 21(1): 181, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32727536

RESUMEN

BACKGROUND: Glioma is the most common intrinsic brain tumor and also occurs in the spinal cord. Activating EGFR mutations are common in IDH1 wild-type gliomas. However, the cooperative partners of EGFR driving gliomagenesis remain poorly understood. RESULTS: We explore EGFR-mutant glioma evolution in conditional mutant mice by whole-exome sequencing, transposon mutagenesis forward genetic screening, and transcriptomics. We show mutant EGFR is sufficient to initiate gliomagenesis in vivo, both in the brain and spinal cord. We identify significantly recurrent somatic alterations in these gliomas including mutant EGFR amplifications and Sub1, Trp53, and Tead2 loss-of-function mutations. Comprehensive functional characterization of 96 gliomas by genome-wide piggyBac insertional mutagenesis in vivo identifies 281 known and novel EGFR-cooperating driver genes, including Cdkn2a, Nf1, Spred1, and Nav3. Transcriptomics confirms transposon-mediated effects on expression of these genes. We validate the clinical relevance of new putative tumor suppressors by showing these are frequently altered in patients' gliomas, with prognostic implications. We discover shared and distinct driver mutations in brain and spinal gliomas and confirm in vivo differential tumor suppressive effects of Pten between these tumors. Functional validation with CRISPR-Cas9-induced mutations in novel genes Tead2, Spred1, and Nav3 demonstrates heightened EGFRvIII-glioma cell proliferation. Chemogenomic analysis of mutated glioma genes reveals potential drug targets, with several investigational drugs showing efficacy in vitro. CONCLUSION: Our work elucidates functional driver landscapes of EGFR-mutant gliomas, uncovering potential therapeutic strategies, and provides new tools for functional interrogation of gliomagenesis.


Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Elementos Transponibles de ADN , Receptores ErbB/genética , Genes erbB , Glioma/genética , Animales , Carcinogénesis , Receptores ErbB/metabolismo , Inestabilidad Genómica , Humanos , Ratones Transgénicos , Terapia Molecular Dirigida , Mutagénesis Insercional , Neoplasias Experimentales , Proteínas del Tejido Nervioso , Secuenciación del Exoma
14.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32661121

RESUMEN

Typhoid toxin is a virulence factor of Salmonella enterica serovar Typhi, the causative agent of typhoid fever, and is thought to be responsible for the symptoms of severe disease. This toxin has a unique A2B5 architecture with two active subunits, the ADP ribosyl transferase PltA and the DNase CdtB, linked to a pentameric B subunit, which is alternatively made of PltB or PltC. Here, we describe the generation and characterization of typhoid toxin-neutralizing human monoclonal antibodies by immunizing genetically engineered mice that have a full set of human immunoglobulin variable region genes. We identified several monoclonal antibodies with strong in vitro and in vivo toxin-neutralizing activity and different mechanisms of toxin neutralization. These antibodies could serve as the basis for the development of novel therapeutic strategies against typhoid fever.


Asunto(s)
Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Neutralizantes/inmunología , Toxinas Bacterianas/inmunología , Salmonella typhi/inmunología , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Neutralizantes/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Línea Celular , Humanos , Ratones , Ratones Transgénicos , Pruebas de Neutralización , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Salmonella typhi/genética , Fiebre Tifoidea/prevención & control
15.
PLoS Pathog ; 16(3): e1008373, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32150583

RESUMEN

Lasting protection has long been a goal for malaria vaccines. The major surface antigen on Plasmodium falciparum sporozoites, the circumsporozoite protein (PfCSP), has been an attractive target for vaccine development and most protective antibodies studied to date interact with the central NANP repeat region of PfCSP. However, it remains unclear what structural and functional characteristics correlate with better protection by one antibody over another. Binding to the junctional region between the N-terminal domain and central NANP repeats has been proposed to result in superior protection: this region initiates with the only NPDP sequence followed immediately by NANP. Here, we isolated antibodies in Kymab mice immunized with full-length recombinant PfCSP and two protective antibodies were selected for further study with reactivity against the junctional region. X-ray and EM structures of two monoclonal antibodies, mAb667 and mAb668, shed light on their differential affinity and specificity for the junctional region. Importantly, these antibodies also bind to the NANP repeat region with equal or better affinity. A comparison with an NANP-only binding antibody (mAb317) revealed roughly similar but statistically distinct levels of protection against sporozoite challenge in mouse liver burden models, suggesting that junctional antibody protection might relate to the ability to also cross-react with the NANP repeat region. Our findings indicate that additional efforts are necessary to isolate a true junctional antibody with no or much reduced affinity to the NANP region to elucidate the role of the junctional epitope in protection.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/química , Anticuerpos Antiprotozoarios/química , Sitios de Unión de Anticuerpos , Epítopos/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Animales , Anticuerpos Monoclonales de Origen Murino/inmunología , Anticuerpos Antiprotozoarios/inmunología , Epítopos/inmunología , Femenino , Masculino , Ratones , Ratones Transgénicos , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Relación Estructura-Actividad
17.
Cell ; 180(2): 278-295.e23, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31978345

RESUMEN

Mutations in FAMIN cause arthritis and inflammatory bowel disease in early childhood, and a common genetic variant increases the risk for Crohn's disease and leprosy. We developed an unbiased liquid chromatography-mass spectrometry screen for enzymatic activity of this orphan protein. We report that FAMIN phosphorolytically cleaves adenosine into adenine and ribose-1-phosphate. Such activity was considered absent from eukaryotic metabolism. FAMIN and its prokaryotic orthologs additionally have adenosine deaminase, purine nucleoside phosphorylase, and S-methyl-5'-thioadenosine phosphorylase activity, hence, combine activities of the namesake enzymes of central purine metabolism. FAMIN enables in macrophages a purine nucleotide cycle (PNC) between adenosine and inosine monophosphate and adenylosuccinate, which consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. This macrophage PNC synchronizes mitochondrial activity with glycolysis by balancing electron transfer to mitochondria, thereby supporting glycolytic activity and promoting oxidative phosphorylation and mitochondrial H+ and phosphate recycling.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Adenina/metabolismo , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Cromatografía Liquida/métodos , Células HEK293 , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Espectrometría de Masas/métodos , Enzimas Multifuncionales/genética , Fosforilación , Proteínas/genética , Nucleótidos de Purina/metabolismo , Purinas/metabolismo
18.
PLoS Genet ; 16(1): e1008577, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31929527

RESUMEN

Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice.


Asunto(s)
Ritmo Circadiano/genética , Sistema de Transporte de Aminoácidos y+/genética , Animales , Aprendizaje Automático , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Receptores de Oxitocina/genética , Proteínas Represoras/genética , Serina Endopeptidasas/genética , Proteínas de Unión a Telómeros/genética , Complejos de Ubiquitina-Proteína Ligasa/genética
19.
mBio ; 10(5)2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31594818

RESUMEN

A genome-scale CRISPR knockout library screen of THP-1 human macrophages was performed to identify loss-of-function mutations conferring resistance to Salmonella uptake. The screen identified 183 candidate genes, from which 14 representative genes involved in actin dynamics (ACTR3, ARPC4, CAPZB, TOR3A, CYFIP2, CTTN, and NHLRC2), glycosaminoglycan metabolism (B3GNT1), receptor signaling (PDGFB and CD27), lipid raft formation (CLTCL1), calcium transport (ATP2A2 and ITPR3), and cholesterol metabolism (HMGCR) were analyzed further. For some of these pathways, known chemical inhibitors could replicate the Salmonella resistance phenotype, indicating their potential as targets for host-directed therapy. The screen indicated a role for the relatively uncharacterized gene NHLRC2 in both Salmonella invasion and macrophage differentiation. Upon differentiation, NHLRC2 mutant macrophages were hyperinflammatory and did not exhibit characteristics typical of macrophages, including atypical morphology and inability to interact and phagocytose bacteria/particles. Immunoprecipitation confirmed an interaction of NHLRC2 with FRYL, EIF2AK2, and KLHL13.IMPORTANCESalmonella exploits macrophages to gain access to the lymphatic system and bloodstream to lead to local and potentially systemic infections. With an increasing number of antibiotic-resistant isolates identified in humans, Salmonella infections have become major threats to public health. Therefore, there is an urgent need to identify alternative approaches to anti-infective therapy, including host-directed therapies. In this study, we used a simple genome-wide screen to identify 183 candidate host factors in macrophages that can confer resistance to Salmonella infection. These factors may be potential therapeutic targets against Salmonella infections.


Asunto(s)
Resistencia a la Enfermedad , Técnicas de Inactivación de Genes , Pruebas Genéticas , Factores Celulares Derivados del Huésped/inmunología , Macrófagos/inmunología , Salmonella/inmunología , Endocitosis , Factores Celulares Derivados del Huésped/genética , Humanos , Macrófagos/microbiología , Modelos Teóricos , Salmonella/crecimiento & desarrollo , Infecciones por Salmonella/inmunología , Células THP-1
20.
Blood ; 134(4): 383-388, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31186273

RESUMEN

Activating mutations in FMS-like tyrosine kinase receptor-3 (FLT3) and Nucleophosmin-1 (NPM1) are most frequent alterations in acute myeloid leukemia (AML), and are often coincidental. The mutational status of NPM1 has strong prognostic relevance to patients with point mutations of the FLT3 tyrosine kinase domain (TKD), but the biological mechanism underlying this effect remains unclear. In the present study, we investigated the effect of the coincidence of NPM1c and FLT3-TKD. Although expression of FLT3-TKD is not sufficient to induce a disease in mice, coexpression with NPM1c rapidly leads to an aggressive myeloproliferative disease in mice with a latency of 31.5 days. Mechanistically, we could show that FLT3-TKD is able to activate the downstream effector molecule signal transducer and activator of transcription 5 (STAT5) exclusively in the presence of mutated NPM1c. Moreover, NPM1c alters the cellular localization of FLT3-TKD from the cell surface to the endoplasmic reticulum, which might thereby lead to the aberrant STAT5 activation. Importantly, aberrant STAT5 activation occurs not only in primary murine cells but also in patients with AML with combined FLT3-TKD and NPM1c mutations. Thus, our data indicate a new mechanism, how NPM1c mislocalizes FLT3-TKD and changes its signal transduction ability.


Asunto(s)
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Proteínas Nucleares/genética , Transducción de Señal , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Sustitución de Aminoácidos , Animales , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Duplicación de Gen , Regulación Leucémica de la Expresión Génica , Humanos , Ratones , Proteínas Nucleares/metabolismo , Nucleofosmina , Transporte de Proteínas , Factor de Transcripción STAT5/metabolismo , Secuencias Repetidas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA