Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Syst Biol ; 18(11): e11006, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321551

RESUMEN

The unravelling of the complexity of cellular metabolism is in its infancy. Cancer-associated genetic alterations may result in changes to cellular metabolism that aid in understanding phenotypic changes, reveal detectable metabolic signatures, or elucidate vulnerabilities to particular drugs. To understand cancer-associated metabolic transformation, we performed untargeted metabolite analysis of 173 different cancer cell lines from 11 different tissues under constant conditions for 1,099 different species using mass spectrometry (MS). We correlate known cancer-associated mutations and gene expression programs with metabolic signatures, generating novel associations of known metabolic pathways with known cancer drivers. We show that metabolic activity correlates with drug sensitivity and use metabolic activity to predict drug response and synergy. Finally, we study the metabolic heterogeneity of cancer mutations across tissues, and find that genes exhibit a range of context specific, and more general metabolic control.


Asunto(s)
Metabolómica , Neoplasias , Humanos , Metabolómica/métodos , Neoplasias/genética , Espectrometría de Masas , Redes y Vías Metabólicas , Línea Celular
2.
Mol Syst Biol ; 18(11): e11033, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321552

RESUMEN

Cancer cells reprogram their metabolism to support growth and invasion. While previous work has highlighted how single altered reactions and pathways can drive tumorigenesis, it remains unclear how individual changes propagate at the network level and eventually determine global metabolic activity. To characterize the metabolic lifestyle of cancer cells across pathways and genotypes, we profiled the intracellular metabolome of 180 pan-cancer cell lines grown in identical conditions. For each cell line, we estimated activity for 49 pathways spanning the entirety of the metabolic network. Upon clustering, we discovered a convergence into only two major metabolic types. These were functionally confirmed by 13 C-flux analysis, lipidomics, and analysis of sensitivity to perturbations. They revealed that the major differences in cancers are associated with lipid, TCA cycle, and carbohydrate metabolism. Thorough integration of these types with multiomics highlighted little association with genetic alterations but a strong association with markers of epithelial-mesenchymal transition. Our analysis indicates that in absence of variations imposed by the microenvironment, cancer cells adopt distinct metabolic programs which serve as vulnerabilities for therapy.


Asunto(s)
Metabolómica , Neoplasias , Humanos , Metaboloma/fisiología , Neoplasias/metabolismo , Redes y Vías Metabólicas , Línea Celular , Microambiente Tumoral
3.
Nat Commun ; 11(1): 4903, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994412

RESUMEN

The CRISPR-Cas9 system has increased the speed and precision of genetic editing in cells and animals. However, model generation for drug development is still expensive and time-consuming, demanding more target flexibility and faster turnaround times with high reproducibility. The generation of a tightly controlled ObLiGaRe doxycycline inducible SpCas9 (ODInCas9) transgene and its use in targeted ObLiGaRe results in functional integration into both human and mouse cells culminating in the generation of the ODInCas9 mouse. Genomic editing can be performed in cells of various tissue origins without any detectable gene editing in the absence of doxycycline. Somatic in vivo editing can model non-small cell lung cancer (NSCLC) adenocarcinomas, enabling treatment studies to validate the efficacy of candidate drugs. The ODInCas9 mouse allows robust and tunable genome editing granting flexibility, speed and uniformity at less cost, leading to high throughput and practical preclinical in vivo therapeutic testing.


Asunto(s)
Sistemas CRISPR-Cas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Descubrimiento de Drogas/métodos , Edición Génica/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteína 9 Asociada a CRISPR/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Doxiciclina/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Femenino , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Vectores Genéticos/genética , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Neoplasias Pulmonares/genética , Masculino , Ratones , Ratones Transgénicos , ARN Guía de Kinetoplastida/genética , Recombinación Genética/efectos de los fármacos , Reproducibilidad de los Resultados , Activación Transcripcional/efectos de los fármacos , Transfección/métodos , Transgenes/genética
4.
SLAS Discov ; 25(6): 618-633, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32476557

RESUMEN

CRISPR/Cas9 is increasingly being used as a tool to prosecute functional genomic screens. However, it is not yet possible to apply the approach at scale across a full breadth of cell types and endpoints. In order to address this, we developed a novel and robust workflow for array-based lentiviral CRISPR/Cas9 screening. We utilized a ß-lactamase reporter gene assay to investigate mediators of TNF-α-mediated NF-κB signaling. The system was adapted for CRISPR/Cas9 through the development of a cell line stably expressing Cas9 and application of a lentiviral gRNA library comprising mixtures of four gRNAs per gene. We screened a 743-gene kinome library whereupon hits were independently ranked by percent inhibition, Z' score, strictly standardized mean difference, and T statistic. A consolidated and optimized ranking was generated using Borda-based methods. Screening data quality was above acceptable limits (Z' ≥ 0.5). In order to determine the contribution of individual gRNAs and to better understand false positives and negatives, a subset of gRNAs, against 152 genes, were profiled in singlicate format. We highlight the use of known reference genes and high-throughput, next-generation amplicon and RNA sequencing to assess screen data quality. Screening with singlicate gRNAs was more successful than screening with mixtures at identifying genes with known regulatory roles in TNF-α-mediated NF-κB signaling and was found to be superior to previous RNAi-based methods. These results add to the available data on TNF-α-mediated NF-κB signaling and establish a high-throughput functional genomic screening approach, utilizing a vector-based arrayed gRNA library, applicable across a wide variety of endpoints and cell types at a genome-wide scale.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , FN-kappa B/genética , Factor de Necrosis Tumoral alfa/genética , Biblioteca de Genes , Genes Reporteros/genética , Genoma Humano/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Fosfotransferasas/clasificación , Fosfotransferasas/genética , ARN Guía de Kinetoplastida/genética , Transducción de Señal/genética , beta-Lactamasas/genética
5.
ACS Chem Biol ; 12(12): 3113-3125, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29131570

RESUMEN

The ubiquitin proteasome system is widely postulated to be a new and important field of drug discovery for the future, with the ubiquitin specific proteases (USPs) representing one of the more attractive target classes within the area. Many USPs have been linked to critical axes for therapeutic intervention, and the finding that USP28 is required for c-Myc stability suggests that USP28 inhibition may represent a novel approach to targeting this so far undruggable oncogene. Here, we describe the discovery of the first reported inhibitors of USP28, which we demonstrate are able to bind to and inhibit USP28, and while displaying a dual activity against the closest homologue USP25, these inhibitors show a high degree of selectivity over other deubiquitinases (DUBs). The utility of these compounds as valuable probes to investigate and further explore cellular DUB biology is highlighted by the demonstration of target engagement against both USP25 and USP28 in cells. Furthermore, we demonstrate that these inhibitors are able to elicit modulation of both the total levels and the half-life of the c-Myc oncoprotein in cells and also induce apoptosis and loss of cell viability in a range of cancer cell lines. We however observed a narrow therapeutic index compared to a panel of tissue-matched normal cell lines. Thus, it is hoped that these probes and data presented herein will further advance our understanding of the biology and tractability of DUBs as potential future therapeutic targets.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Células HCT116 , Humanos
6.
Adm Policy Ment Health ; 43(3): 297-301, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-25234345

RESUMEN

This paper outlines the experience of the Child Outcomes Research Consortium-formerly known as the CAMHS Outcomes Research Consortium; the named changed in 2014 in recognition of the widening scope of the work of the collaboration; a learning collaboration of service providers, funders, service user groups and researchers across the UK and beyond, jointly committed to collecting and using routinely collected outcome data to improve and enhance service provision and improve understanding of how best to help young people with mental health issues and their families.


Asunto(s)
Servicios de Salud del Niño , Investigación sobre Servicios de Salud , Servicios de Salud Mental , Medición de Resultados Informados por el Paciente , Niño , Conducta Cooperativa , Humanos , Aprendizaje , Evaluación de Resultado en la Atención de Salud
7.
Int J Pharm ; 496(2): 1015-25, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26536528

RESUMEN

Disc-shaped nanoparticles with high aspect ratios have been reported to show preferential cellular uptake in vitro by mammalian cells. However, engineering and producing such disc-shaped nanoparticles are often complex. This study reports for the first time the use of a single, approved pharmaceutical excipient to prepare stable disc-shaped nanoparticles with a high aspect ratio via a simple, organic solvent free process. These disc-shaped nanoparticles were formed by fragmentation of stearoyl macrogol-32 glycerides (Gelucire 50/13) hydrogels. The nanoparticles showed good physical stability as a result of their outer coating of polyethylene glycol (PEG) that is a part of Gelucire composition. Using lysozyme as a model hydrophilic protein, these nanoparticles demonstrated a good loading capacity for hydrophilic macromolecules, mainly via surface adsorption. As a result of the higher hydrophobicity of the core of the nano-discs, the loading efficiency of hydrophobic model components, such as Coumarin-6, was significantly increased in comparison to the model hydrophilic compound. These Gelucire nano-discs exhibited no cytotoxicity at the tested level of 600µg/ml for Caco-2 cells. Rapid in vitro cellular uptake of the disc-shaped nanoparticles by Caco-2 cells was observed. This rapid internalisation was attributed to the high aspect ratio of the disc-shape nanoparticles which provides a high contact surface area between the particles and cells and may lower the strain energy required for membrane deformation during uptake. The results of this study demonstrate the promising potential of Gelucire nano-discs as effective nanocarriers for drug delivery and which can be manufactured using a simple solvent-free process.


Asunto(s)
Sistemas de Liberación de Medicamentos , Glicéridos/química , Muramidasa/administración & dosificación , Nanopartículas/química , Polietilenglicoles/química , Células CACO-2 , Dispersión Dinámica de Luz , Grasas/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Aceites/química
8.
PLoS One ; 7(10): e45179, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056194

RESUMEN

Alzheimer's disease (AD) is associated with non-cognitive symptoms such as changes in feeding behaviour that are often characterised by an increase in appetite. Increased food intake is observed in several mouse models of AD including the triple transgenic (3×TgAD) mouse, but the mechanisms underlying this hyperphagia are unknown. We therefore examined feeding behaviour in 3×TgAD mice and tested their sensitivity to exogenous and endogenous satiety factors by assessing food intake and activation of key brain regions. In the behavioural satiety sequence (BSS), 3×TgAD mice consumed more food after a fast compared to Non-Tg controls. Feeding and drinking behaviours were increased and rest decreased in 3×TgAD mice, but the overall sequence of behaviours in the BSS was maintained. Exogenous administration of the satiety factor cholecystokinin (CCK; 8-30 µg/kg, i.p.) dose-dependently reduced food intake in Non-Tg controls and increased inactive behaviour, but had no effect on food intake or behaviour in 3×TgAD mice. CCK (15 µg/kg, i.p.) increased c-Fos protein expression in the supraoptic nucleus of the hypothalamus, and the nucleus tractus solitarius (NTS) and area postrema of the brainstem to the same extent in Non-Tg and 3×TgAD mice, but less c-Fos positive cells were detected in the paraventricular hypothalamic nucleus of CCK-treated 3×TgAD compared to Non-Tg mice. In response to a fast or a period of re-feeding, there was no difference in the number of c-Fos-positive cells detected in the arcuate nucleus of the hypothalamus, NTS and area postrema of 3×TgAD compared to Non-Tg mice. The degree of c-Fos expression in the NTS was positively correlated to food intake in Non-Tg mice, however, this relationship was absent in 3×TgAD mice. These data demonstrate that 3×TgAD mice show increased feeding behaviour and insensitivity to satiation, which is possibly due to defective gut-brain signalling in response to endogenous satiety factors released by food ingestion.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Modelos Animales de Enfermedad , Conducta Alimentaria/fisiología , Saciedad/fisiología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Área Postrema/efectos de los fármacos , Área Postrema/metabolismo , Colecistoquinina/farmacología , Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Presenilina-1/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Saciedad/efectos de los fármacos , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/metabolismo , Núcleo Supraóptico/efectos de los fármacos , Núcleo Supraóptico/metabolismo , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...