Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Blood Adv ; 7(14): 3479-3484, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-36897249

RESUMEN

Glucocorticoids (GCs) are the cornerstone of acute lymphoblastic leukemia (ALL) therapy. Although mutations in NR3C1, which encodes the GC receptor (GR), and other genes involved in GC signaling occur at relapse, additional mechanisms of adaptive GC resistance are uncertain. We transplanted and treated 10 primary mouse T-lineage acute lymphoblastic leukemias (T-ALLs) initiated by retroviral insertional mutagenesis with GC dexamethasone (DEX). Multiple distinct relapsed clones from 1 such leukemia (T-ALL 8633) exhibited discrete retroviral integrations that upregulated Jdp2 expression. This leukemia harbored a Kdm6a mutation. In the human T-ALL cell line CCRF-CEM, enforced JDP2 overexpression conferred GC resistance, whereas KDM6A inactivation unexpectedly enhanced GC sensitivity. In the context of KDM6A knockout, JDP2 overexpression induced profound GC resistance, counteracting the sensitization conferred by KDM6A loss. These resistant "double mutant" cells with combined KDM6A loss and JDP2 overexpression exhibited decreased NR3C1 mRNA and GR protein upregulation upon DEX exposure. Analysis of paired samples from 2 patients with KDM6A-mutant T-ALL in a relapsed pediatric ALL cohort revealed a somatic NR3C1 mutation at relapse in 1 patient and a markedly elevated JDP2 expression in the other. Together, these data implicate JDP2 overexpression as a mechanism of adaptive GC resistance in T-ALL, which functionally interacts with KDM6A inactivation.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Niño , Humanos , Ratones , Animales , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Dexametasona/farmacología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Glucocorticoides/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Recurrencia , Proteínas Represoras
2.
Cell Genom ; 2(11): None, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36388765

RESUMEN

Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.

3.
Nat Genet ; 54(9): 1376-1389, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36050548

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Here, using whole-genome, exome and transcriptome sequencing of 2,754 childhood patients with ALL, we find that, despite a generally low mutation burden, ALL cases harbor a median of four putative somatic driver alterations per sample, with 376 putative driver genes identified varying in prevalence across ALL subtypes. Most samples harbor at least one rare gene alteration, including 70 putative cancer driver genes associated with ubiquitination, SUMOylation, noncoding transcripts and other functions. In hyperdiploid B-ALL, chromosomal gains are acquired early and synchronously before ultraviolet-induced mutation. By contrast, ultraviolet-induced mutations precede chromosomal gains in B-ALL cases with intrachromosomal amplification of chromosome 21. We also demonstrate the prognostic significance of genetic alterations within subtypes. Intriguingly, DUX4- and KMT2A-rearranged subtypes separate into CEBPA/FLT3- or NFATC4-expressing subgroups with potential clinical implications. Together, these results deepen understanding of the ALL genomic landscape and associated outcomes.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Aberraciones Cromosómicas , Exoma/genética , Genómica , Humanos , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
4.
Acta Neuropathol Commun ; 10(1): 80, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35642016

RESUMEN

The majority of diffuse midline gliomas, H3 K27-altered (DMG-H3 K27-a), are infiltrating pediatric brain tumors that arise in the pons with no effective treatment. To understand how clonal evolution contributes to the tumor's invasive spread, we performed exome sequencing and SNP array profiling on 49 multi-region autopsy samples from 11 patients with pontine DMG-H3 K27-a enrolled in a phase I clinical trial of PDGFR inhibitor crenolanib. For each patient, a phylogenetic tree was constructed by testing multiple possible clonal evolution models to select the one consistent with somatic mutations and copy number variations across all tumor regions. The tree was then used to deconvolute subclonal composition and prevalence at each tumor region to study convergent evolution and invasion patterns. Somatic variants in the PI3K pathway, a late event, are enriched in our cohort, affecting 70% of patients. Convergent evolution of PI3K at distinct phylogenetic branches was detected in 40% of the patients. 24 (~ 50%) of tumor regions were occupied by subclones of mixed lineages with varying molecular ages, indicating multiple waves of invasion across the pons and extrapontine. Subclones harboring a PDGFRA amplicon, including one that amplified a PDGRFAY849C mutant allele, were detected in four patients; their presence in extrapontine tumor and normal brain samples imply their involvement in extrapontine invasion. Our study expands the current knowledge on tumor invasion patterns in DMG-H3 K27-a, which may inform the design of future clinical trials.


Asunto(s)
Variaciones en el Número de Copia de ADN , Glioma , Niño , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Histonas/genética , Humanos , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética , Filogenia , Inhibidores de Proteínas Quinasas
5.
Trends Genet ; 38(2): 194-208, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34483003

RESUMEN

The somatic mutations in each cancer genome are caused by multiple mutational processes, each of which leaves a characteristic imprint (or 'signature'), potentially caused by specific etiologies or exposures. Deconvolution of these signatures offers a glimpse into the evolutionary history of individual tumors. Recent work has shown that mutational signatures may also yield therapeutic and prognostic insights, including the identification of cell-intrinsic signatures as biomarkers of drug response and prognosis. For example, mutational signatures indicating homologous recombination deficiency are associated with poly(ADP)-ribose polymerase (PARP) inhibitor sensitivity, whereas APOBEC-associated signatures are associated with ataxia telangiectasia and Rad3-related kinase (ATR) inhibitor sensitivity. Furthermore, therapy-induced mutational signatures implicated in cancer progression have also been uncovered, including the identification of thiopurine-induced TP53 mutations in leukemia. In this review, we explore the various ways mutational signatures can reveal new therapeutic and prognostic insights, thus extending their traditional role in identifying disease etiology.


Asunto(s)
Neoplasias , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Poli(ADP-Ribosa) Polimerasas , Pronóstico
6.
Nat Commun ; 12(1): 6468, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753908

RESUMEN

Survival in high-risk pediatric neuroblastoma has remained around 50% for the last 20 years, with immunotherapies and targeted therapies having had minimal impact. Here, we identify the small molecule CX-5461 as selectively cytotoxic to high-risk neuroblastoma and synergistic with low picomolar concentrations of topoisomerase I inhibitors in improving survival in vivo in orthotopic patient-derived xenograft neuroblastoma mouse models. CX-5461 recently progressed through phase I clinical trial as a first-in-human inhibitor of RNA-POL I. However, we also use a comprehensive panel of in vitro and in vivo assays to demonstrate that CX-5461 has been mischaracterized and that its primary target at pharmacologically relevant concentrations, is in fact topoisomerase II beta (TOP2B), not RNA-POL I. This is important because existing clinically approved chemotherapeutics have well-documented off-target interactions with TOP2B, which have previously been shown to cause both therapy-induced leukemia and cardiotoxicity-often-fatal adverse events, which can emerge several years after treatment. Thus, while we show that combination therapies involving CX-5461 have promising anti-tumor activity in vivo in neuroblastoma, our identification of TOP2B as the primary target of CX-5461 indicates unexpected safety concerns that should be examined in ongoing phase II clinical trials in adult patients before pursuing clinical studies in children.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , Indoles/uso terapéutico , Morfolinas/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Pirimidinas/uso terapéutico , Sulfonamidas/uso terapéutico , Animales , Benzotiazoles , Western Blotting , Línea Celular Tumoral , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Desnudos , Simulación de Dinámica Molecular , Naftiridinas , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
BMC Cancer ; 21(1): 1233, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789196

RESUMEN

BACKGROUND: RNA editing leads to post-transcriptional variation in protein sequences and has important biological implications. We sought to elucidate the landscape of RNA editing events across pediatric cancers. METHODS: Using RNA-Seq data mapped by a pipeline designed to minimize mapping ambiguity, we investigated RNA editing in 711 pediatric cancers from the St. Jude/Washington University Pediatric Cancer Genome Project focusing on coding variants which can potentially increase protein sequence diversity. We combined de novo detection using paired tumor DNA-RNA data with analysis of known RNA editing sites. RESULTS: We identified 722 unique RNA editing sites in coding regions across pediatric cancers, 70% of which were nonsynonymous recoding variants. Nearly all editing sites represented the canonical A-to-I (n = 706) or C-to-U sites (n = 14). RNA editing was enriched in brain tumors compared to other cancers, including editing of glutamate receptors and ion channels involved in neurotransmitter signaling. RNA editing profiles of each pediatric cancer subtype resembled those of the corresponding normal tissue profiled by the Genotype-Tissue Expression (GTEx) project. CONCLUSIONS: In this first comprehensive analysis of RNA editing events in pediatric cancer, we found that the RNA editing profile of each cancer subtype is similar to its normal tissue of origin. Tumor-specific RNA editing events were not identified indicating that successful immunotherapeutic targeting of RNA-edited peptides in pediatric cancer should rely on increased antigen presentation on tumor cells compared to normal but not on tumor-specific RNA editing per se.


Asunto(s)
Neoplasias/genética , Edición de ARN , Análisis de Secuencia de ARN/métodos , Neoplasias Encefálicas/genética , Niño , ADN de Neoplasias , Humanos , Inmunoterapia , Neoplasias/metabolismo , Neoplasias/terapia , Sistemas de Lectura Abierta , Especificidad de Órganos , ARN Neoplásico , Secuenciación Completa del Genoma
8.
Genome Med ; 13(1): 170, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711268

RESUMEN

BACKGROUND: Metastatic breast cancer is a deadly disease with a low 5-year survival rate. Tracking metastatic spread in living patients is difficult and thus poorly understood. METHODS: Via rapid autopsy, we have collected 30 tumor samples over 3 timepoints and across 8 organs from a triple-negative metastatic breast cancer patient. The large number of sites sampled, together with deep whole-genome sequencing and advanced computational analysis, allowed us to comprehensively reconstruct the tumor's evolution at subclonal resolution. RESULTS: The most unique, previously unreported aspect of the tumor's evolution that we observed in this patient was the presence of "subclone incubators," defined as metastatic sites where substantial tumor evolution occurs before colonization of additional sites and organs by subclones that initially evolved at the incubator site. Overall, we identified four discrete waves of metastatic expansions, each of which resulted in a number of new, genetically similar metastasis sites that also enriched for particular organs (e.g., abdominal vs bone and brain). The lung played a critical role in facilitating metastatic spread in this patient: the lung was the first site of metastatic escape from the primary breast lesion, subclones at this site were likely the source of all four subsequent metastatic waves, and multiple sites in the lung acted as subclone incubators. Finally, functional annotation revealed that many known drivers or metastasis-promoting tumor mutations in this patient were shared by some, but not all metastatic sites, highlighting the need for more comprehensive surveys of a patient's metastases for effective clinical intervention. CONCLUSIONS: Our analysis revealed the presence of substantial tumor evolution at metastatic incubator sites in a patient, with potentially important clinical implications. Our study demonstrated that sampling of a large number of metastatic sites affords unprecedented detail for studying metastatic evolution.


Asunto(s)
Autopsia , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/genética , Metástasis de la Neoplasia , Biopsia , Evolución Molecular , Femenino , Humanos , Persona de Mediana Edad , Mutación , Filogenia
9.
Blood Cancer Discov ; 2(4): 326-337, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34250504

RESUMEN

We evaluate clinical significance of recently identified subtypes of acute lymphoblastic leukemia (ALL) in 598 children treated with minimal residual disease (MRD)-directed therapy. Among the 16 B-ALL and 8 T-ALL subtypes identified by next generation sequencing, ETV6-RUNX1, high-hyperdiploid and DUX4-rearranged B-ALL had the best five-year event-free survival rates (95% to 98.4%); TCF3-PBX1, PAX5alt, T-cell, ETP, iAMP21, and hypodiploid ALL intermediate rates (80.0% to 88.2%); and BCR-ABL1, BCR-ABL1-like and ETV6-RUNX1-like and KMT2A-rearranged ALL the worst rates (64.1% to 76.2%). All but three of the 142 patients with day-8 blood MRD <0.01% remained in remission. Among new subtypes, intensified therapy based on day-15 MRD≥1% improved outcome of DUX4-rearranged, BCR-ABL1-like, and ZNF384-rearranged ALL, and achievement of day-42 MRD<0.01% did not preclude relapse of PAX5alt, MEF2D-rearranged and ETV6-RUNX1-like ALL. Thus, new subtypes including DUX4-rearranged, PAX5alt, BCR-ABL1-like, ETV6-RUNX1-like, MEF2D-rearranged and ZNF384-rearranged ALL have important prognostic and therapeutic implications.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Niño , Aberraciones Cromosómicas , Humanos , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pronóstico
10.
Cancer Discov ; 11(12): 3008-3027, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34301788

RESUMEN

Genomic studies of pediatric cancer have primarily focused on specific tumor types or high-risk disease. Here, we used a three-platform sequencing approach, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and RNA sequencing (RNA-seq), to examine tumor and germline genomes from 309 prospectively identified children with newly diagnosed (85%) or relapsed/refractory (15%) cancers, unselected for tumor type. Eighty-six percent of patients harbored diagnostic (53%), prognostic (57%), therapeutically relevant (25%), and/or cancer-predisposing (18%) variants. Inclusion of WGS enabled detection of activating gene fusions and enhancer hijacks (36% and 8% of tumors, respectively), small intragenic deletions (15% of tumors), and mutational signatures revealing of pathogenic variant effects. Evaluation of paired tumor-normal data revealed relevance to tumor development for 55% of pathogenic germline variants. This study demonstrates the power of a three-platform approach that incorporates WGS to interrogate and interpret the full range of genomic variants across newly diagnosed as well as relapsed/refractory pediatric cancers. SIGNIFICANCE: Pediatric cancers are driven by diverse genomic lesions, and sequencing has proven useful in evaluating high-risk and relapsed/refractory cases. We show that combined WGS, WES, and RNA-seq of tumor and paired normal tissues enables identification and characterization of genetic drivers across the full spectrum of pediatric cancers. This article is highlighted in the In This Issue feature, p. 2945.


Asunto(s)
Neoplasias , Niño , ADN , Humanos , Mutación , Neoplasias/genética , Análisis de Secuencia de ARN , Secuenciación del Exoma
11.
Nat Commun ; 12(1): 985, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579957

RESUMEN

Pediatric therapy-related myeloid neoplasms (tMN) occur in children after exposure to cytotoxic therapy and have a dismal prognosis. The somatic and germline genomic alterations that drive these myeloid neoplasms in children and how they arise have yet to be comprehensively described. We use whole exome, whole genome, and/or RNA sequencing to characterize the genomic profile of 84 pediatric tMN cases (tMDS: n = 28, tAML: n = 56). Our data show that Ras/MAPK pathway mutations, alterations in RUNX1 or TP53, and KMT2A rearrangements are frequent somatic drivers, and we identify cases with aberrant MECOM expression secondary to enhancer hijacking. Unlike adults with tMN, we find no evidence of pre-existing minor tMN clones (including those with TP53 mutations), but rather the majority of cases are unrelated clones arising as a consequence of cytotoxic therapy. These studies also uncover rare cases of lineage switch disease rather than true secondary neoplasms.


Asunto(s)
Leucemia Mieloide Aguda/genética , Neoplasias Primarias Secundarias/genética , Niño , Regulación Neoplásica de la Expresión Génica , Genómica , N-Metiltransferasa de Histona-Lisina , Humanos , Leucemia Mieloide Aguda/terapia , Mutación , Síndromes Mielodisplásicos , Proteína de la Leucemia Mieloide-Linfoide , Neoplasias Primarias Secundarias/terapia , Pronóstico , Secuenciación del Exoma
12.
Cancer Discov ; 11(5): 1082-1099, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33408242

RESUMEN

Effective data sharing is key to accelerating research to improve diagnostic precision, treatment efficacy, and long-term survival in pediatric cancer and other childhood catastrophic diseases. We present St. Jude Cloud (https://www.stjude.cloud), a cloud-based data-sharing ecosystem for accessing, analyzing, and visualizing genomic data from >10,000 pediatric patients with cancer and long-term survivors, and >800 pediatric sickle cell patients. Harmonized genomic data totaling 1.25 petabytes are freely available, including 12,104 whole genomes, 7,697 whole exomes, and 2,202 transcriptomes. The resource is expanding rapidly, with regular data uploads from St. Jude's prospective clinical genomics programs. Three interconnected apps within the ecosystem-Genomics Platform, Pediatric Cancer Knowledgebase, and Visualization Community-enable simultaneously performing advanced data analysis in the cloud and enhancing the Pediatric Cancer knowledgebase. We demonstrate the value of the ecosystem through use cases that classify 135 pediatric cancer subtypes by gene expression profiling and map mutational signatures across 35 pediatric cancer subtypes. SIGNIFICANCE: To advance research and treatment of pediatric cancer, we developed St. Jude Cloud, a data-sharing ecosystem for accessing >1.2 petabytes of raw genomic data from >10,000 pediatric patients and survivors, innovative analysis workflows, integrative multiomics visualizations, and a knowledgebase of published data contributed by the global pediatric cancer community.This article is highlighted in the In This Issue feature, p. 995.


Asunto(s)
Anemia de Células Falciformes/genética , Nube Computacional , Genómica , Difusión de la Información , Neoplasias/genética , Niño , Ecosistema , Hospitales Pediátricos , Humanos
13.
Cancer Cell ; 39(1): 83-95.e4, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33434514

RESUMEN

GenomePaint (https://genomepaint.stjude.cloud/) is an interactive visualization platform for whole-genome, whole-exome, transcriptome, and epigenomic data of tumor samples. Its design captures the inter-relatedness between DNA variations and RNA expression, supporting in-depth exploration of both individual cancer genomes and full cohorts. Regulatory non-coding variants can be inspected and analyzed along with coding variants, and their functional impact further explored by examining 3D genome data from cancer cell lines. Further, GenomePaint correlates mutation and expression patterns with patient outcomes, and supports custom data upload. We used GenomePaint to unveil aberrant splicing that disrupts the RING domain of CREBBP, discover cis activation of the MYC oncogene by duplication of the NOTCH1-MYC enhancer in B-lineage acute lymphoblastic leukemia, and explore the inter- and intra-tumor heterogeneity at EGFR in adult glioblastomas. These examples demonstrate that deep multi-omics exploration of individual cancer genomes enabled by GenomePaint can lead to biological insights for follow-up validation.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Variación Genética , Neoplasias/genética , Adulto , Línea Celular Tumoral , Niño , Bases de Datos Genéticas , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Interfaz Usuario-Computador , Secuenciación del Exoma , Secuenciación Completa del Genoma
14.
Nat Cancer ; 2(8): 819-834, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-35122027

RESUMEN

Chemotherapy is a standard treatment for pediatric acute lymphoblastic leukemia (ALL), which sometimes relapses with chemoresistant features. However, whether acquired drug-resistance mutations in relapsed ALL pre-exist or are induced by treatment remains unknown. Here we provide direct evidence of a specific mechanism by which chemotherapy induces drug-resistance-associated mutations leading to relapse. Using genomic and functional analysis of relapsed ALL we show that thiopurine treatment in mismatch repair (MMR)-deficient leukemias induces hotspot TP53 R248Q mutations through a specific mutational signature (thio-dMMR). Clonal evolution analysis reveals sequential MMR inactivation followed by TP53 mutation in some patients with ALL. Acquired TP53 R248Q mutations are associated with on-treatment relapse, poor treatment response and resistance to multiple chemotherapeutic agents, which could be reversed by pharmacological p53 reactivation. Our findings indicate that TP53 R248Q in relapsed ALL originates through synergistic mutagenesis from thiopurine treatment and MMR deficiency and suggest strategies to prevent or treat TP53-mutant relapse.


Asunto(s)
Síndromes Neoplásicos Hereditarios , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Mutagénesis , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Enfermedades de Inmunodeficiencia Primaria , Recurrencia , Proteína p53 Supresora de Tumor/genética
15.
Transl Oncol ; 14(1): 100946, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33221681

RESUMEN

Cancer cell phenotypes evolve during a tumor's treatment. In some cases, tumor cells acquire cancer stem cell-like (CSL) traits such as resistance to chemotherapy and diminished differentiation; therefore, targeting these cells may be therapeutically beneficial. In this study we show that in progressive estrogen receptor positive (ER+) metastatic breast cancer tumors, resistant subclones that emerge following chemotherapy have increased CSL abundance. Further, in vitro organoid growth of ER+ patient cancer cells also shows that chemotherapy treatment leads to increased abundance of ALDH+/CD44+ CSL cells. Chemotherapy induced CSL abundance is blocked by treatment with a pan-HDAC inhibitor, belinostat. Belinostat treatment diminished both mammosphere formation and size following chemotherapy, indicating a decrease in progenitor CSL traits. HDAC inhibitors specific to class IIa (HDAC4, HDAC5) and IIb (HDAC6) were shown to primarily reverse the chemo-resistant CSL state. Single-cell RNA sequencing analysis with patient samples showed that HDAC targets and MYC signaling were promoted by chemotherapy and inhibited upon HDAC inhibitor treatment. In summary, HDAC inhibition can block chemotherapy-induced drug resistant phenotypes with 'one-two punch' strategy in refractory breast cancer cells.

16.
Nat Commun ; 11(1): 5183, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33056981

RESUMEN

Neuroblastoma is a pediatric malignancy with heterogeneous clinical outcomes. To better understand neuroblastoma pathogenesis, here we analyze whole-genome, whole-exome and/or transcriptome data from 702 neuroblastoma samples. Forty percent of samples harbor at least one recurrent driver gene alteration and most aberrations, including MYCN, ATRX, and TERT alterations, differ in frequency by age. MYCN alterations occur at median 2.3 years of age, TERT at 3.8 years, and ATRX at 5.6 years. COSMIC mutational signature 18, previously associated with reactive oxygen species, is the most common cause of driver point mutations in neuroblastoma, including most ALK and Ras-activating variants. Signature 18 appears early and is continuous throughout disease evolution. Signature 18 is enriched in neuroblastomas with MYCN amplification, 17q gain, and increased expression of mitochondrial ribosome and electron transport-associated genes. Recurrent FGFR1 variants in six patients, and ALK N-terminal structural alterations in five samples, identify additional patients potentially amenable to precision therapy.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Neuroblastoma/genética , Adolescente , Adulto , Factores de Edad , Quinasa de Linfoma Anaplásico/genética , Niño , Preescolar , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Conjuntos de Datos como Asunto , Transporte de Electrón/genética , Exoma/genética , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Ribosomas Mitocondriales , Mutación , Neuroblastoma/patología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Proteínas Ribosómicas/genética , Transcriptoma/genética , Secuenciación Completa del Genoma , Adulto Joven
18.
Blood ; 135(1): 41-55, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31697823

RESUMEN

To study the mechanisms of relapse in acute lymphoblastic leukemia (ALL), we performed whole-genome sequencing of 103 diagnosis-relapse-germline trios and ultra-deep sequencing of 208 serial samples in 16 patients. Relapse-specific somatic alterations were enriched in 12 genes (NR3C1, NR3C2, TP53, NT5C2, FPGS, CREBBP, MSH2, MSH6, PMS2, WHSC1, PRPS1, and PRPS2) involved in drug response. Their prevalence was 17% in very early relapse (<9 months from diagnosis), 65% in early relapse (9-36 months), and 32% in late relapse (>36 months) groups. Convergent evolution, in which multiple subclones harbor mutations in the same drug resistance gene, was observed in 6 relapses and confirmed by single-cell sequencing in 1 case. Mathematical modeling and mutational signature analysis indicated that early relapse resistance acquisition was frequently a 2-step process in which a persistent clone survived initial therapy and later acquired bona fide resistance mutations during therapy. In contrast, very early relapses arose from preexisting resistant clone(s). Two novel relapse-specific mutational signatures, one of which was caused by thiopurine treatment based on in vitro drug exposure experiments, were identified in early and late relapses but were absent from 2540 pan-cancer diagnosis samples and 129 non-ALL relapses. The novel signatures were detected in 27% of relapsed ALLs and were responsible for 46% of acquired resistance mutations in NT5C2, PRPS1, NR3C1, and TP53. These results suggest that chemotherapy-induced drug resistance mutations facilitate a subset of pediatric ALL relapses.


Asunto(s)
Biomarcadores de Tumor/genética , Metotrexato/uso terapéutico , Mutagénesis/efectos de los fármacos , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , 5'-Nucleotidasa/genética , Antimetabolitos Antineoplásicos/uso terapéutico , Niño , Análisis Mutacional de ADN , Femenino , Estudios de Seguimiento , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Pronóstico , Receptores de Glucocorticoides/genética , Tasa de Supervivencia , Proteína p53 Supresora de Tumor/genética
19.
Cancer Res ; 79(11): 2892-2908, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048499

RESUMEN

Melanoma has an unusual capacity to spread in early-stage disease, prompting aggressive clinical intervention in very thin primary tumors. Despite these proactive efforts, patients with low-risk, low-stage disease can still develop metastasis, indicating the presence of permissive cues for distant spread. Here, we show that constitutive activation of the small GTPase ARF6 (ARF6Q67L) is sufficient to accelerate metastasis in mice with BRAFV600E/Cdkn2aNULL melanoma at a similar incidence and severity to Pten loss, a major driver of PI3K activation and melanoma metastasis. ARF6Q67L promoted spontaneous metastasis from significantly smaller primary tumors than PTENNULL, implying an enhanced ability of ARF6-GTP to drive distant spread. ARF6 activation increased lung colonization from circulating melanoma cells, suggesting that the prometastatic function of ARF6 extends to late steps in metastasis. Unexpectedly, ARF6Q67L tumors showed upregulation of Pik3r1 expression, which encodes the p85 regulatory subunit of PI3K. Tumor cells expressing ARF6Q67L displayed increased PI3K protein levels and activity, enhanced PI3K distribution to cellular protrusions, and increased AKT activation in invadopodia. ARF6 is necessary and sufficient for activation of both PI3K and AKT, and PI3K and AKT are necessary for ARF6-mediated invasion. We provide evidence for aberrant ARF6 activation in human melanoma samples, which is associated with reduced survival. Our work reveals a previously unknown ARF6-PI3K-AKT proinvasive pathway, it demonstrates a critical role for ARF6 in multiple steps of the metastatic cascade, and it illuminates how melanoma cells can acquire an early metastatic phenotype in patients. SIGNIFICANCE: These findings reveal a prometastatic role for ARF6 independent of tumor growth, which may help explain how melanoma spreads distantly from thin, early-stage primary tumors.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/11/2892/F1.large.jpg.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Melanoma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Cutáneas/patología , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Guanosina Trifosfato/metabolismo , Humanos , Neoplasias Pulmonares/secundario , Melanoma/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones Mutantes , Ratones SCID , Metástasis de la Neoplasia , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Cutáneas/metabolismo
20.
Mol Cancer Res ; 17(4): 895-906, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30651371

RESUMEN

To investigate the genomic evolution of metastatic pediatric osteosarcoma, we performed whole-genome and targeted deep sequencing on 14 osteosarcoma metastases and two primary tumors from four patients (two to eight samples per patient). All four patients harbored ancestral (truncal) somatic variants resulting in TP53 inactivation and cell-cycle aberrations, followed by divergence into relapse-specific lineages exhibiting a cisplatin-induced mutation signature. In three of the four patients, the cisplatin signature accounted for >40% of mutations detected in the metastatic samples. Mutations potentially acquired during cisplatin treatment included NF1 missense mutations of uncertain significance in two patients and a KIT G565R activating mutation in one patient. Three of four patients demonstrated widespread ploidy differences between samples from the sample patient. Single-cell seeding of metastasis was detected in most metastatic samples. Cross-seeding between metastatic sites was observed in one patient, whereas in another patient a minor clone from the primary tumor seeded both metastases analyzed. These results reveal extensive clonal heterogeneity in metastatic osteosarcoma, much of which is likely cisplatin-induced. IMPLICATIONS: The extent and consequences of chemotherapy-induced damage in pediatric cancers is unknown. We found that cisplatin treatment can potentially double the mutational burden in osteosarcoma, which has implications for optimizing therapy for recurrent, chemotherapy-resistant disease.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Cisplatino/uso terapéutico , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Antineoplásicos/farmacología , Neoplasias Óseas/patología , Cisplatino/farmacología , Evolución Clonal/efectos de los fármacos , Análisis Mutacional de ADN , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Masculino , Modelos Genéticos , Mutagénesis/efectos de los fármacos , Metástasis de la Neoplasia , Osteosarcoma/patología , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...