Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cancer Lett ; 588: 216776, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38432581

RESUMEN

Due to the limited effectiveness of current treatments, the survival rate of patients with metastatic castration-resistant prostate cancer (mCRPC) is significantly reduced. Consequently, it is imperative to identify novel therapeutic targets for managing these patients. Since the invasive ability of cells is crucial for establishing and maintaining metastasis, the aim of this study was to identify the essential regulators of invasive abilities of mCRPC cells by conducting two independent high-throughput CRISPR/Cas9 screenings. Furthermore, some of the top hits were validated using siRNA technology, with protein arginine methyltransferase 7 (PRMT7) emerging as the most promising candidate. We demonstrated that its inhibition or depletion via genetic or pharmacological approaches significantly reduces invasive, migratory and proliferative abilities of mCRPC cells in vitro. Moreover, we confirmed that PRMT7 ablation reduces cell dissemination in chicken chorioallantoic membrane and mouse xenograft assays. Molecularly, PRMT7 reprograms the expression of several adhesion molecules by methylating various transcription factors, such as FoxK1, resulting in the loss of adhesion from the primary tumor and increased motility of mCRPC cells. Furthermore, PRMT7 higher expression correlates with tumor aggressivity and poor overall survival in prostate cancer patients. Thus, this study demonstrates that PRMT7 is a potential therapeutic target and potential biomarker for mPCa.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Proteína-Arginina N-Metiltransferasas , Masculino , Animales , Ratones , Humanos , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Sistemas CRISPR-Cas , Genes Esenciales , Detección Precoz del Cáncer
2.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138981

RESUMEN

Liver cancer represents a major health problem worldwide with growing incidence and high mortality, hepatocellular carcinoma (HCC) being the most frequent. Hepatocytes are likely the cellular origin of most HCCs through the accumulation of genetic alterations, although hepatic progenitor cells (HPCs) might also be candidates in specific cases, as discussed here. HCC usually develops in a context of chronic inflammation, fibrosis, and cirrhosis, although the role of fibrosis is controversial. The interplay between hepatocytes, immune cells and hepatic stellate cells is a key issue. This review summarizes critical aspects of the liver tumor microenvironment paying special attention to platelets as new key players, which exert both pro- and anti-tumor effects, determined by specific contexts and a tight regulation of platelet signaling. Additionally, the relevance of specific signaling pathways, mainly HGF/MET, EGFR and TGF-ß is discussed. HGF and TGF-ß are produced by different liver cells and platelets and regulate not only tumor cell fate but also HPCs, inflammation and fibrosis, these being key players in these processes. The role of C3G/RAPGEF1, required for the proper function of HGF/MET signaling in HCC and HPCs, is highlighted, due to its ability to promote HCC growth and, regulate HPC fate and platelet-mediated actions on liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Cirrosis Hepática/metabolismo , Fibrosis , Factor de Crecimiento Transformador beta/metabolismo , Inflamación/metabolismo , Microambiente Tumoral
3.
Int J Cancer ; 152(2): 283-297, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36093604

RESUMEN

Matrix metalloproteinase-11 (MMP11) is an enzyme with proteolytic activity against matrix and nonmatrix proteins. Although most MMPs are secreted as inactive proenzymes and are later activated extracellularly, MMP11 is activated intracellularly by furin within the constitutive secretory pathway. It is a key factor in physiological tissue remodeling and its alteration may play an important role in the progression of epithelial malignancies and other diseases. TCGA colon and colorectal adenocarcinoma data showed that upregulation of MMP11 expression correlates with tumorigenesis and malignancy. Here, we provide evidence that a germline variant in the MMP11 gene (NM_005940: c.232C>T; p.(Pro78Ser)), identified by whole exome sequencing, can increase the tumorigenic properties of colorectal cancer (CRC) cells. P78S is located in the prodomain region, which is responsible for blocking MMP11's protease activity. This variant was detected in the proband and all the cancer-affected family members analyzed, while it was not detected in healthy relatives. In silico analyses predict that P78S could have an impact on the activation of the enzyme. Furthermore, our in vitro analyses show that the expression of P78S in HCT116 cells increases tumor cell invasion and proliferation. In summary, our results show that this variant could modify the structure of the MMP11 prodomain, producing a premature or uncontrolled activation of the enzyme that may contribute to an early CRC onset in these patients. The study of this gene in other CRC cases will provide further information about its role in CRC development, which might improve patient treatment in the future.


Asunto(s)
Neoplasias Colorrectales , Mutación con Ganancia de Función , Humanos , Metaloproteinasa 11 de la Matriz/genética , Metaloproteinasa 11 de la Matriz/metabolismo , Neoplasias Colorrectales/patología , Carcinogénesis , Células Germinativas/metabolismo
4.
Int J Biol Sci ; 18(15): 5873-5884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263169

RESUMEN

Previous data indicate that C3G (RapGEF1) main isoform is highly expressed in liver progenitor cells (or oval cells) compared to adult mature hepatocytes, suggesting it may play an important role in oval cell biology. Hence, we have explored C3G function in the regulation of oval cell properties by permanent gene silencing using shRNAs. We found that C3G knock-down enhanced migratory and invasive ability of oval cells by promoting a partial epithelial to mesenchymal transition (EMT). This is likely mediated by upregulation of mRNA expression of the EMT-inducing transcription factors, Snail1, Zeb1 and Zeb2, induced in C3G-silenced oval cells. This EMT is associated to a higher expression of the stemness markers, CD133 and CD44. Moreover, C3G down-regulation increased oval cells clonogenic capacity by enhancing cell scattering. However, C3G knock-down did not impair oval cell differentiation into hepatocyte lineage. Mechanistic studies revealed that HGF/MET signaling and its pro-invasive activity was impaired in oval cells with low levels of C3G, while TGF-ß signaling was increased. Altogether, these data suggest that C3G might be tightly regulated to ensure liver repair in chronic liver diseases such as non-alcoholic steatohepatitis. Hence, reduced C3G levels could facilitate oval cell expansion, after the proliferation peak, by enhancing migration.


Asunto(s)
Transición Epitelial-Mesenquimal , Células Madre , Transición Epitelial-Mesenquimal/genética , Regulación hacia Abajo/genética , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , ARN Mensajero/metabolismo
5.
J Pathol ; 258(3): 312-324, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36148647

RESUMEN

Despite the well-known hepatoprotective role of the epidermal growth factor receptor (EGFR) pathway upon acute damage, its specific actions during chronic liver disease, particularly cholestatic injury, remain ambiguous and unresolved. Here, we analyzed the consequences of inactivating EGFR signaling in the liver on the regenerative response following cholestatic injury. For that, transgenic mice overexpressing a dominant negative mutant human EGFR lacking tyrosine kinase activity (ΔEGFR) in albumin-positive cells were submitted to liver damage induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), an experimental model resembling human primary sclerosing cholangitis. Our results show an early activation of EGFR after 1-2 days of a DDC-supplemented diet, followed by a signaling switch-off. Furthermore, ΔEGFR mice showed less liver damage and a more efficient regeneration following DDC injury. Analysis of the mechanisms driving this effect revealed an enhanced activation of mitogenic/survival signals, AKT and ERK1/2-MAPKs, and changes in cell turnover consistent with a quicker resolution of damage in response to DDC. These changes were concomitant with profound differences in the profile of intrahepatic immune cells, consisting of a shift in the M1/M2 balance towards M2 polarity, and the Cd4/Cd8 ratio in favor of Cd4 lymphocytes, overall supporting an immune cell switch into a pro-restorative phenotype. Interestingly, ΔEGFR livers also displayed an amplified ductular reaction, with increased expression of EPCAM and an increased number of CK19-positive ductular structures in portal areas, demonstrating an overexpansion of ductular progenitor cells. In summary, our work supports the notion that hepatocyte-specific EGFR activity acts as a key player in the crosstalk between parenchymal and non-parenchymal hepatic cells, promoting the pro-inflammatory response activated during cholestatic injury and therefore contributing to the pathogenesis of cholestatic liver disease. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Hepatopatías , Regeneración Hepática , Albúminas/metabolismo , Albúminas/farmacología , Animales , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Descarboxilasas de Aminoácido-L-Aromático/farmacología , Molécula de Adhesión Celular Epitelial/metabolismo , Molécula de Adhesión Celular Epitelial/farmacología , Receptores ErbB/metabolismo , Hepatocitos/patología , Humanos , Hígado/patología , Hepatopatías/patología , Regeneración Hepática/fisiología , Ratones , Ratones Transgénicos , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo
7.
Matrix Biol ; 111: 207-225, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35787446

RESUMEN

Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an important regulator of extracellular matrix turnover that has been traditionally regarded as a potential tumor suppressor owing to its inhibitory effects of matrix metalloproteinases. Intriguingly, this interpretation has been challenged by the consistent observation that increased expression of TIMP-1 is associated with poor prognosis in virtually all cancer types including lung cancer, supporting a tumor-promoting function. However, how TIMP-1 is dysregulated within the tumor microenvironment and how it drives tumor progression in lung cancer is poorly understood. We analyzed the expression of TIMP-1 and its cell surface receptor CD63 in two major lung cancer subtypes: lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC), and defined the tumor-promoting effects of their interaction. We found that TIMP-1 is aberrantly overexpressed in tumor-associated fibroblasts (TAFs) in ADC compared to SCC. Mechanistically, TIMP-1 overexpression was mediated by the selective hyperactivity of the pro-fibrotic TGF-ß1/SMAD3 pathway in ADC-TAFs. Likewise, CD63 was upregulated in ADC compared to SCC cells. Genetic analyses revealed that TIMP-1 secreted by TGF-ß1-activated ADC-TAFs is both necessary and sufficient to enhance growth and invasion of ADC cancer cells in culture, and that tumor cell expression of CD63 was required for these effects. Consistently, in vivo analyses revealed that ADC cells co-injected with fibroblasts with reduced SMAD3 or TIMP-1 expression into immunocompromised mice attenuated tumor aggressiveness compared to tumors bearing parental fibroblasts. We also found that high TIMP1 and CD63 mRNA levels combined define a stronger prognostic biomarker than TIMP1 alone. Our results identify an excessive stromal TIMP-1 within the tumor microenvironment selectively in lung ADC, and implicate it in a novel tumor-promoting TAF-carcinoma crosstalk, thereby pointing to TIMP-1/CD63 interaction as a novel therapeutic target in lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Fibroblastos Asociados al Cáncer , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Tetraspanina 30 , Inhibidor Tisular de Metaloproteinasa-1 , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma de Células Escamosas/metabolismo , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Tetraspanina 30/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Microambiente Tumoral
8.
Cancers (Basel) ; 14(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35565388

RESUMEN

The expression of the semaphorin-3F (SEMA3F) and neuropilin-2 (NRP2) is involved in the regulation of lymphangiogenesis. The present study analyzes the relationship between the transcriptional expression of the SEMA3F-NRP2 genes and the presence of occult lymph node metastases in patients with cN0 head and neck squamous cell carcinomas. We analyzed the transcriptional expression of SEMA3F and NRP2 in a cohort of 53 patients with cN0 squamous cell carcinoma treated with an elective neck dissection. Occult lymph node metastases were found in 37.7% of the patients. Patients with occult lymph node metastases (cN0/pN+) had significantly lower SEMA3F expression values than patients without lymph node involvement (cN0/pN0). Considering the expression of the SEMA3F-NRP2 genes, patients were classified into two groups according to the risk of occult nodal metastasis: Group 1 (n = 34), high SEMA3F/low NRP2 expression, with a low risk of occult nodal involvement (14.7% cN0/pN+); Group 2 (n = 19), low SEMA3F or high SEMA3F/high NRP2 expression, with a high risk of occult nodal involvement (78.9% cN0/pN+). Multivariate analysis showed that patients in Group 2 had a 26.2 higher risk of lymph node involvement than patients in Group 1. There was a significant relationship between the transcriptional expression values of the SEMA3F-NRP2 genes and the risk of occult nodal metastases.

9.
Sci Rep ; 12(1): 7075, 2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-35490180

RESUMEN

Range verification of clinical protontherapy systems via positron-emission tomography (PET) is not a mature technology, suffering from two major issues: insufficient signal from low-energy protons in the Bragg peak area and biological washout of PET emitters. The use of contrast agents including 18O, 68Zn or 63Cu, isotopes with a high cross section for low-energy protons in nuclear reactions producing PET emitters, has been proposed to enhance the PET signal in the last millimeters of the proton path. However, it remains a challenge to achieve sufficient concentrations of these isotopes in the target volume. Here we investigate the possibilities of 18O-enriched water (18-W), a potential contrast agent that could be incorporated in large proportions in live tissues by replacing regular water. We hypothesize that 18-W could also mitigate the problem of biological washout, as PET (18F) isotopes created inside live cells would remain trapped in the form of fluoride anions (F-), allowing its signal to be detected even hours after irradiation. To test our hypothesis, we designed an experiment with two main goals: first, prove that 18-W can incorporate enough 18O into a living organism to produce a detectable signal from 18F after proton irradiation, and second, determine the amount of activity that remains trapped inside the cells. The experiment was performed on a chicken embryo chorioallantoic membrane tumor model of head and neck cancer. Seven eggs with visible tumors were infused with 18-W and irradiated with 8-MeV protons (range in water: 0.74 mm), equivalent to clinical protons at the end of particle range. The activity produced after irradiation was detected and quantified in a small-animal PET-CT scanner, and further studied by placing ex-vivo tumours in a gamma radiation detector. In the acquired images, specific activity of 18F (originating from 18-W) could be detected in the tumour area of the alive chicken embryo up to 9 h after irradiation, which confirms that low-energy protons can indeed produce a detectable PET signal if a suitable contrast agent is employed. Moreover, dynamic PET studies in two of the eggs evidenced a minimal effect of biological washout, with 68% retained specific 18F activity at 8 h after irradiation. Furthermore, ex-vivo analysis of 4 irradiated tumours showed that up to 3% of oxygen atoms in the targets were replaced by 18O from infused 18-W, and evidenced an entrapment of 59% for specific activity of 18F after washing, supporting our hypothesis that F- ions remain trapped within the cells. An infusion of 18-W can incorporate 18O in animal tissues by replacing regular water inside cells, producing a PET signal when irradiated with low-energy protons that could be used for range verification in protontherapy. 18F produced inside cells remains entrapped and suffers from minimal biological washout, allowing for a sharper localization with longer PET acquisitions. Further studies must evaluate the feasibility of this technique in dosimetric conditions closer to clinical practice, in order to define potential protocols for its use in patients.


Asunto(s)
Neoplasias de la Mama , Terapia de Protones , Animales , Embrión de Pollo , Pollos , Medios de Contraste , Femenino , Radioisótopos de Flúor , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Protones , Agua
10.
J Clin Invest ; 132(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35192545

RESUMEN

The tumor microenvironment (TME) is reprogrammed by cancer cells and participates in all stages of tumor progression. The contribution of stromal cells to the reprogramming of the TME is not well understood. Here, we provide evidence of the role of the cytokine oncostatin M (OSM) as central node for multicellular interactions between immune and nonimmune stromal cells and the epithelial cancer cell compartment. OSM receptor (OSMR) deletion in a multistage breast cancer model halted tumor progression. We ascribed causality to the stromal function of the OSM axis by demonstrating reduced tumor burden of syngeneic tumors implanted in mice lacking OSMR. Single-cell and bioinformatic analysis of murine and human breast tumors revealed that OSM expression was restricted to myeloid cells, whereas OSMR was detected predominantly in fibroblasts and, to a lower extent, cancer cells. Myeloid-derived OSM reprogrammed fibroblasts to a more contractile and tumorigenic phenotype and elicited the secretion of VEGF and proinflammatory chemokines CXCL1 and CXCL16, leading to increased myeloid cell recruitment. Collectively, our data support the notion that the stromal OSM/OSMR axis reprograms the immune and nonimmune microenvironment and plays a key role in breast cancer progression.


Asunto(s)
Neoplasias de la Mama , Microambiente Tumoral , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Ratones , Oncostatina M/genética , Oncostatina M/metabolismo , Transducción de Señal
11.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576182

RESUMEN

C3G (RAPGEF1) is a guanine nucleotide exchange factor (GEF) for GTPases from the Ras superfamily, mainly Rap1, although it also acts through GEF-independent mechanisms. C3G regulates several cellular functions. It is expressed at relatively high levels in specific brain areas, playing important roles during embryonic development. Recent studies have uncovered different roles for C3G in cancer that are likely to depend on cell context, tumour type, and stage. However, its role in brain tumours remained unknown until very recently. We found that C3G expression is downregulated in GBM, which promotes the acquisition of a more mesenchymal phenotype, enhancing migration and invasion, but not proliferation. ERKs hyperactivation, likely induced by FGFR1, is responsible for this pro-invasive effect detected in C3G silenced cells. Other RTKs (Receptor Tyrosine Kinases) are also dysregulated and could also contribute to C3G effects. However, it remains undetermined whether Rap1 is a mediator of C3G actions in GBM. Various Rap1 isoforms can promote proliferation and invasion in GBM cells, while C3G inhibits migration/invasion. Therefore, other RapGEFs could play a major role regulating Rap1 activity in these tumours. Based on the information available, C3G could represent a new biomarker for GBM diagnosis, prognosis, and personalised treatment of patients in combination with other GBM molecular markers. The quantification of C3G levels in circulating tumour cells (CTCs) in the cerebrospinal liquid and/or circulating fluids might be a useful tool to improve GBM patient treatment and survival.


Asunto(s)
Glioblastoma/metabolismo , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Animales , Glioblastoma/genética , Factor 2 Liberador de Guanina Nucleótido/genética , Humanos , Células Neoplásicas Circulantes/metabolismo , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo
12.
Cancer Lett ; 521: 14-28, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34419498

RESUMEN

Cancer-associated fibroblasts (CAFs) are highly abundant stromal components in the tumour microenvironment. These cells contribute to tumorigenesis and indeed, they have been proposed as a target for anti-cancer therapies. Similarly, targeting the Rho-GTPase RAC1 has also been suggested as a potential therapeutic target in cancer. Here, we show that targeting RAC1 activity, either pharmacologically or by genetic silencing, increases the pro-tumorigenic activity of CAFs by upregulating IL-1ß secretion. Moreover, inhibiting RAC1 activity shifts the CAF subtype to a more aggressive phenotype. Thus, as RAC1 suppresses the secretion of IL-1ß by CAFs, reducing RAC1 activity in combination with the depletion of this cytokine should be considered as an interesting therapeutic option for breast cancer in which tumour cells retain intact IL-1ß signalling.

13.
Cancers (Basel) ; 13(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201840

RESUMEN

Breast cancer (BrCa) is the leading cause of death among women worldwide, with about one million new cases diagnosed each year. In spite of the improvements in diagnosis, early detection and treatment, there is still a high incidence of mortality and failure to respond to current therapies. With the use of several well-established biomarkers, such as hormone receptors and human epidermal growth factor receptor-2 (HER2), as well as genetic analysis, BrCa patients can be categorized into multiple subgroups: Luminal A, Luminal B, HER2-enriched, and Basal-like, with specific treatment strategies. Although chemotherapy and targeted therapies have greatly improved the survival of patients with BrCa, there is still a large number of patients who relapse or who fail to respond. The role of the tumor microenvironment in BrCa progression is becoming increasingly understood. Cancer-associated fibroblasts (CAFs) are the principal population of stromal cells in breast tumors. In this review, we discuss the current understanding of CAFs' role in altering the tumor response to therapeutic agents as well as in fostering metastasis in BrCa. In addition, we also review the available CAFs-directed molecular therapies and their potential implications for BrCa management.

14.
Sci Rep ; 11(1): 12287, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112843

RESUMEN

Metastasis is the process of cancer cell dissemination from primary tumors to different organs being the bone the preferred site for metastatic homing of prostate cancer (PCa) cells. Prostate tumorigenesis is a multi-stage process that ultimately tends to advance to become metastatic PCa. Once PCa patients develop skeletal metastases, they eventually succumb to the disease. Therefore, it is imperative to identify essential molecular drivers of this process to develop new therapeutic alternatives for the treatment of this devastating disease. Here, we have identified MAP4K4 as a relevant gene for metastasis in PCa. Our work shows that genetic deletion of MAP4K4 or pharmacological inhibition of its encoded kinase, HGK, inhibits metastatic PCa cells migration and clonogenic properties. Hence, MAP4K4 might promote metastasis and tumor growth. Mechanistically, our results indicate that HGK depleted cells exhibit profound differences in F-actin organization, increasing cell spreading and focal adhesion stability. Additionally, HGK depleted cells fails to respond to TNF-α stimulation and chemoattractant action. Moreover, here we show that HGK upregulation in PCa samples from TCGA and other databases correlates with a poor prognosis of the disease. Hence, we suggest that it could be used as prognostic biomarker to predict the appearance of an aggressive phenotype of PCa tumors and ultimately, the appearance of metastasis. In summary, our results highlight an essential role for HGK in the dissemination of PCa cells and its potential use as prognostic biomarker.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Metástasis de la Neoplasia/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Serina-Treonina Quinasas/genética , Actinas/metabolismo , Biomarcadores de Tumor , Adhesión Celular/genética , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Expresión Génica , Silenciador del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Modelos Biológicos , Estadificación de Neoplasias , Pronóstico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/mortalidad , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Necrosis Tumoral alfa
15.
Biomolecules ; 11(5)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922633

RESUMEN

Metastasis is a process by which cancer cells escape from the location of the primary tumor invading normal tissues at distant organs. Chromosomal instability (CIN) is a hallmark of human cancer, associated with metastasis and therapeutic resistance. The centrosome plays a major role in organizing the microtubule cytoskeleton in animal cells regulating cellular architecture and cell division. Loss of centrosome integrity activates the p38-p53-p21 pathway, which results in cell-cycle arrest or senescence and acts as a cell-cycle checkpoint pathway. Structural and numerical centrosome abnormalities can lead to aneuploidy and CIN. New findings derived from studies on cancer and rare genetic disorders suggest that centrosome dysfunction alters the cellular microenvironment through Rho GTPases, p38, and JNK (c-Jun N-terminal Kinase)-dependent signaling in a way that is favorable for pro-invasive secretory phenotypes and aneuploidy tolerance. We here review recent data on how centrosomes act as complex molecular platforms for Rho GTPases and p38 MAPK (Mitogen activated kinase) signaling at the crossroads of CIN, cytoskeleton remodeling, and immune evasion via both cell-autonomous and non-autonomous mechanisms.


Asunto(s)
Centrosoma/metabolismo , Inflamación/patología , Metástasis de la Neoplasia/patología , Aneuploidia , Animales , Ciclo Celular/fisiología , Puntos de Control del Ciclo Celular/fisiología , Centrosoma/fisiología , Inestabilidad Cromosómica/fisiología , Citoesqueleto/fisiología , Humanos , Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Sistema de Señalización de MAP Quinasas/fisiología , Microtúbulos/metabolismo , Metástasis de la Neoplasia/genética , Neoplasias/metabolismo , Transducción de Señal , Microambiente Tumoral , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Proteínas de Unión al GTP rho/metabolismo
16.
Cell Death Dis ; 12(4): 348, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824275

RESUMEN

Glioblastoma (GBM) is the most aggressive tumor from the central nervous system (CNS). The current lack of efficient therapies makes essential to find new treatment strategies. C3G, a guanine nucleotide exchange factor for some Ras proteins, plays a dual role in cancer, but its function in GBM remains unknown. Database analyses revealed a reduced C3G mRNA expression in GBM patient samples. C3G protein levels were also decreased in a panel of human GBM cell lines as compared to astrocytes. Based on this, we characterized C3G function in GBM using in vitro and in vivo human GBM models. We report here that C3G downregulation promoted the acquisition of a more mesenchymal phenotype that enhanced the migratory and invasive capacity of GBM cells. This facilitates foci formation in anchorage-dependent and -independent growth assays and the generation of larger tumors in xenografts and chick chorioallantoic membrane (CAM) assays, but with a lower cell density, as proliferation was reduced. Mechanistically, C3G knock-down impairs EGFR signaling by reducing cell surface EGFR through recycling inhibition, while upregulating the activation of several other receptor tyrosine kinases (RTKs) that might promote invasion. In particular, FGF2, likely acting through FGFR1, promoted invasion of C3G-silenced GBM cells. Moreover, ERKs mediate this invasiveness, both in response to FGF2- and serum-induced chemoattraction. In conclusion, our data show the distinct dependency of GBM tumors on C3G for EGF/EGFR signaling versus other RTKs, suggesting that assessing C3G levels may discriminate GBM patient responders to different RTK inhibition protocols. Hence, patients with a low C3G expression might not respond to EGFR inhibitors.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Movimiento Celular/fisiología , Glioblastoma/metabolismo , Factor 2 Liberador de Guanina Nucleótido/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Regulación hacia Abajo , Receptores ErbB/metabolismo , Glioblastoma/patología , Humanos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/fisiología
18.
Cancers (Basel) ; 12(8)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823931

RESUMEN

The complexity of hepatocellular carcinoma (HCC) challenges the identification of disease-relevant signals. C3G, a guanine nucleotide exchange factor for Rap and other Ras proteins, plays a dual role in cancer acting as either a tumor suppressor or promoter depending on tumor type and stage. The potential relevance of C3G upregulation in HCC patients suggested by database analysis remains unknown. We have explored C3G function in HCC and the underlying mechanisms using public patient data and in vitro and in vivo human and mouse HCC models. We found that C3G is highly expressed in progenitor cells and neonatal hepatocytes, whilst being down-regulated in adult hepatocytes and re-expressed in human HCC patients, mouse HCC models and HCC cell lines. Moreover, high C3G mRNA levels correlate with tumor progression and a lower patient survival rate. C3G expression appears to be tightly modulated within the HCC program, influencing distinct cell biological properties. Hence, high C3G expression levels are necessary for cell tumorigenic properties, as illustrated by reduced colony formation in anchorage-dependent and -independent growth assays induced by permanent C3G silencing using shRNAs. Additionally, we demonstrate that C3G down-regulation interferes with primary HCC tumor formation in xenograft assays, increasing apoptosis and decreasing proliferation. In vitro assays also revealed that C3G down-regulation enhances the pro-migratory, invasive and metastatic properties of HCC cells through an epithelial-mesenchymal switch that favors the acquisition of a more mesenchymal phenotype. Consistently, a low C3G expression in HCC cells correlates with lung metastasis formation in mice. However, the subsequent restoration of C3G levels is associated with metastatic growth. Mechanistically, C3G down-regulation severely impairs HGF/MET signaling activation in HCC cells. Collectively, our results indicate that C3G is a key player in HCC. C3G promotes tumor growth and progression, and the modulation of its levels is essential to ensure distinct biological features of HCC cells throughout the oncogenic program. Furthermore, C3G requirement for HGF/MET signaling full activation provides mechanistic data on how it works, pointing out the relevance of assessing whether high C3G levels could identify HCC responders to MET inhibitors.

19.
J Clin Med ; 9(3)2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178425

RESUMEN

Current evidences state clear that both normal development of breast tissue as well as its malignant progression need many-sided local and systemic communications between epithelial cells and stromal components. During development, the stroma, through remarkably regulated contextual signals, affects the fate of the different mammary cells regarding their specification and differentiation. Likewise, the stroma can generate tumour environments that facilitate the neoplastic growth of the breast carcinoma. Mammographic density has been described as a risk factor in the development of breast cancer and is ascribed to modifications in the composition of breast tissue, including both stromal and glandular compartments. Thus, stroma composition can dramatically affect the progression of breast cancer but also its early detection since it is mainly responsible for the differences in mammographic density among individuals. This review highlights both the pathological and biological evidences for a pivotal role of the breast stroma in mammographic density, with particular emphasis on dense and malignant stromas, their clinical meaning and potential therapeutic implications for breast cancer patients.

20.
Int J Cancer ; 147(4): 1163-1179, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31943158

RESUMEN

Around 40% of newly diagnosed lung cancer patients are Stage IV, where the improvement of survival and reduction of disease-related adverse events is the main goal for oncologists. In this scenario, we present preclinical evidence supporting the use of ABTL0812 in combination with chemotherapy for treating advanced and metastatic Nonsmall cell lung adenocarcinomas (NSCLC) and squamous carcinomas. ABTL0812 is a new chemical entity, currently in Phase 1b/2a clinical trial for advanced squamous NSCLC in combination with paclitaxel and carboplatin (P/C), after successfully completing the first-in-human trial where it showed an excellent safety profile and signs of efficacy. We show here that ABTL0812 inhibits Akt/mTOR axis by inducing the overexpression of TRIB3 and activating autophagy in lung squamous carcinoma cell lines. Furthermore, treatment with ABTL0812 also induces AMPK activation and ROS accumulation. Moreover, combination of ABTL0812 with chemotherapy markedly increases the therapeutic effect of chemotherapy without increasing toxicity. We further show that combination of ABTL0812 and chemotherapy induces nonapoptotic cell death mediated by TRIB3 activation and autophagy induction. We also present preliminary clinical data indicating that TRIB3 could serve as a potential novel pharmacodynamic biomarker to monitor ABTL0812 activity administered alone or in combination with chemotherapy in squamous NSCLC patients. The safety profile of ABTL0812 and its good synergy with chemotherapy potentiate the therapeutic potential of current lines of treatment based on chemotherapy regimens, arising as a promising option for improving these patients therapeutic expectancy.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Autofagia/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones Desnudos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Análisis de Supervivencia , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA