Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(3): e0299875, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38498588

RESUMEN

The widespread availability and diversity of open-source microcontrollers paired with off-the-shelf electronics and 3D printed technology has led to the creation of a wide range of low-cost scientific instruments, including microscopes, spectrometers, sensors, data loggers, and other tools that can be used for research, education, and experimentation. These devices can be used to explore a wide range of scientific topics, from biology and chemistry to physics and engineering. In this study, we designed and built a multifunction fluorescent open source in vivo/in vitro imaging system (openIVIS) system that integrates a Raspberry Pi with commercial cameras and LEDs with 3D printed structures combined with an acrylic housing. Our openIVIS provides three excitation wavelengths of 460 nm, 520 nm, and 630 nm integrated with Python control software to enable fluorescent measurements across the full visible light spectrum. To demonstrate the potential applications of our system, we tested its performance against a diverse set of experiments including laboratory assays (measuring fluorescent dyes, using optical nanosensors, and DNA gel electrophoresis) to potentially fieldable applications (plant and mineral imaging). We also tested the potential use for a high school biology environment by imaging small animals and tracking their development over the course of ten days. Our system demonstrated its ability to measure a wide dynamic range fluorescent response from millimolar to picomolar concentrations in the same sample while measuring responses across visible wavelengths. These results demonstrate the power and flexibility of open-source hardware and software and how it can be integrated with customizable manufacturing to create low-cost scientific instruments with a wide range of applications. Our study provides a promising model for the development of low-cost instruments that can be used in both research and education.


Asunto(s)
Electrónica , Microscopía , Animales , Luz , Programas Informáticos , Tecnología
2.
Neurophotonics ; 9(Suppl 2): S24001, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36052058

RESUMEN

This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.

3.
Neurophotonics ; 9(Suppl 1): 013001, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35493335

RESUMEN

Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.

4.
J Biomed Opt ; 25(2): 1-12, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32103649

RESUMEN

SIGNIFICANCE: Ultrasound-assisted optical imaging techniques, such as ultrasound-modulated optical tomography, allow for imaging deep inside scattering media. In these modalities, a fraction of the photons passing through the ultrasound beam is modulated. The efficiency by which the photons are converted is typically referred to as the ultrasound modulation's "tagging efficiency." Interestingly, this efficiency has been defined in varied and discrepant fashion throughout the scientific literature. AIM: The aim of this study is the ultrasound tagging efficiency in a manner consistent with its definition and experimentally verify the contributive (or noncontributive) relationship between the mechanisms involved in the ultrasound optical modulation process. APPROACH: We adopt a general description of the tagging efficiency as the fraction of photons traversing an ultrasound beam that is frequency shifted (inclusion of all frequency-shifted components). We then systematically studied the impact of ultrasound pressure and frequency on the tagging efficiency through a balanced detection measurement system that measured the power of each order of the ultrasound tagged light, as well as the power of the unmodulated light component. RESULTS: Through our experiments, we showed that the tagging efficiency can reach 70% in a scattering phantom with a scattering anisotropy of 0.9 and a scattering coefficient of 4 mm - 1 for a 1-MHz ultrasound with a relatively low (and biomedically acceptable) peak pressure of 0.47 MPa. Furthermore, we experimentally confirmed that the two ultrasound-induced light modulation mechanisms, particle displacement and refractive index change, act in opposition to each other. CONCLUSION: Tagging efficiency was quantified via simulation and experiments. These findings reveal avenues of investigation that may help improve ultrasound-assisted optical imaging techniques.


Asunto(s)
Imagen Óptica/métodos , Dispersión de Radiación , Ultrasonografía/métodos , Anisotropía , Simulación por Computador , Óptica y Fotónica , Fantasmas de Imagen
5.
Nat Photonics ; 12: 84-90, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29527234

RESUMEN

Recently, wavefront shaping with disordered media has demonstrated optical manipulation capabilities beyond those of conventional optics, including extended volume, aberration-free focusing and subwavelength focusing. However, translating these capabilities to useful applications has remained challenging as the input-output characteristics of the disordered media (P variables) need to be exhaustively determined via O(P) measurements. Here, we propose a paradigm shift where the disorder is specifically designed so its exact input-output characteristics are known a priori and can be used with only a few alignment steps. We implement this concept with a disorder-engineered metasurface, which exhibits additional unique features for wavefront shaping such as a large optical memory effect range in combination with a wide angular scattering range, excellent stability, and a tailorable angular scattering profile. Using this designed metasurface with wavefront shaping, we demonstrate high numerical aperture (NA > 0.5) focusing and fluorescence imaging with an estimated ~2.2×108 addressable points in an ~8 mm field of view.

6.
Biomed Opt Express ; 8(11): 4855-4864, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29188086

RESUMEN

The strong optical scattering of biological tissue confounds our ability to focus light deeply into the brain beyond depths of a few hundred microns. This challenge can be potentially overcome by exploiting wavefront shaping techniques which allow light to be focused through or inside scattering media. However, these techniques require the scattering medium to be static, as changes in the arrangement of the scatterers between the wavefront recording and playback steps reduce the fidelity of the focus that is formed. Furthermore, as the thickness of the scattering medium increases, the influence of the dynamic nature becomes more severe due to the growing number of scattering events experienced by each photon. In this paper, by examining the scattering dynamics in the mouse brain in vivo via multispeckle diffusing wave spectroscopy (MSDWS) using a custom fiber probe that simulates a point-like source within the brain, we investigate the relationship between this decorrelation time and the depth of the point-like light source inside the living mouse brain at depths up to 3.2 mm.

8.
Sci Adv ; 3(12): eaao5520, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29226248

RESUMEN

Noninvasive light focusing deep inside living biological tissue has long been a goal in biomedical optics. However, the optical scattering of biological tissue prevents conventional optical systems from tightly focusing visible light beyond several hundred micrometers. The recently developed wavefront shaping technique time-reversed ultrasonically encoded (TRUE) focusing enables noninvasive light delivery to targeted locations beyond the optical diffusion limit. However, until now, TRUE focusing has only been demonstrated inside nonliving tissue samples. We present the first example of TRUE focusing in 2-mm-thick living brain tissue and demonstrate its application for optogenetic modulation of neural activity in 800-µm-thick acute mouse brain slices at a wavelength of 532 nm. We found that TRUE focusing enabled precise control of neuron firing and increased the spatial resolution of neuronal excitation fourfold when compared to conventional lens focusing. This work is an important step in the application of TRUE focusing for practical biomedical uses.

9.
Optica ; 4(11): 1337-1343, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29623290

RESUMEN

Optical scattering has traditionally limited the ability to focus light inside scattering media such as biological tissue. Recently developed wavefront shaping techniques promise to overcome this limit by tailoring an optical wavefront to constructively interfere at a target location deep inside scattering media. To find such a wavefront solution, a "guide-star" mechanism is required to identify the target location. However, developing guidestars of practical usefulness is challenging, especially in biological tissue, which hinders the translation of wavefront shaping techniques. Here, we demonstrate a guidestar mechanism that relies on magnetic modulation of small particles. This guidestar method features an optical modulation efficiency of 29% and enables micrometer-scale focusing inside biological tissue with a peak intensity-to-background ratio (PBR) of 140; both numbers are one order of magnitude higher than those achieved with the ultrasound guidestar, a popular guidestar method. We also demonstrate that light can be focused on cells labeled with magnetic particles, and to different target locations by magnetically controlling the position of a particle. Since magnetic fields have a large penetration depth even through bone structures like the skull, this optical focusing method holds great promise for deep-tissue applications such as optogenetic modulation of neurons, targeted light-based therapy, and imaging.

10.
J Opt Soc Am A Opt Image Sci Vis ; 33(2): 270-5, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26831778

RESUMEN

Novel techniques in the field of wavefront shaping have enabled light to be focused deep inside or through scattering media such as biological tissue. However, most of these demonstrations have been limited to thin, static samples since these techniques are very sensitive to changes in the arrangement of the scatterers within. As the samples of interest get thicker, the influence of the dynamic nature of the sample becomes even more pronounced and the window of time in which the wavefront solutions remain valid shrinks further. In this paper, we examine the time scales upon which this decorrelation happens in acute rat brain slices via multispeckle diffusing wave spectroscopy and investigate the relationship between this decorrelation time and the thickness of the sample using diffusing wave spectroscopy theory and Monte Carlo photon transport simulation.


Asunto(s)
Encéfalo/citología , Análisis Espectral , Animales , Difusión , Optogenética , Ratas , Dispersión de Radiación , Factores de Tiempo
11.
Optica ; 3(10): 1107-1113, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28713849

RESUMEN

Imaging of a weak target hidden behind a scattering medium can be significantly confounded by glare. We report a method, termed coherence gated negation (CGN), that uses destructive optical interference to suppress glare and allow improved imaging of a weak target. As a demonstration, we show that by permuting through a set range of amplitude and phase values for a reference beam interfering with the optical field from the glare and target reflection, we can suppress glare by an order of magnitude, even when the optical wavefront is highly disordered. This strategy significantly departs from conventional coherence gating methods in that CGN actively "gates out" the unwanted optical contributions while conventional methods "gate in" the target optical signal. We further show that the CGN method can outperform conventional coherence gating image quality in certain scenarios by more effectively rejecting unwanted optical contributions.

12.
Optica ; 2(8): 728-735, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26677458

RESUMEN

Digital optical phase conjugation (DOPC) is a new technique employed in wavefront shaping and phase conjugation for focusing light through or within scattering media such as biological tissues. DOPC is particularly attractive as it intrinsically achieves a high fluence reflectivity in comparison to nonlinear optical approaches. However, the slow refresh rate of liquid crystal spatial light modulators and limitations imposed by computer data transfer speeds have thus far made it difficult for DOPC to achieve a playback latency of shorter than ~200 ms and, therefore, prevented DOPC from being practically applied to thick living samples. In this paper, we report a novel DOPC system that is capable of 5.3 ms playback latency. This speed improvement of almost 2 orders of magnitude is achieved by using a digital micromirror device, field programmable gate array (FPGA) processing, and a single-shot binary phase retrieval technique. With this system, we are able to focus through 2.3 mm living mouse skin with blood flowing through it (decorrelation time ~30 ms) and demonstrate that the focus can be maintained indefinitely-an important technological milestone that has not been previously reported, to the best of our knowledge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...