Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (14)2008 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19066578

RESUMEN

Pluripotency can be induced in differentiated murine by viral transduction of Oct4, Sox2, Klf4, and c-Myc (Takahashi and Yamanaka, 2006; Wernig, et al., 2007; Okita, et al., 2007; Maherali, et al., 2007). We have devised a reprogramming strategy in which these four transcription factors are expressed from doxycycline (dox)-inducible lentiviral vectors (Brambrink et al., 2008). Using these inducible constructs, we can derive induced pluripotent stem (iPS) cells from mouse embryonic fibroblasts (MEFs). In this video, we demonstrate the procedure for the generation of inducible lentiviruses that express the four transcription factors and show how to infect MEFs with these viruses in order to produce iPS cells. By using inducible lentiviruses, the expression of the four factors in controlled by the addition of doxycyline to the culture medium. The advantage of this system over the traditional retroviral infection is the ability to turn the genes on and off so that the kinetics of reprogramming and gene expression requirements can be analyzed in detail.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , ARN/genética , Factores de Transcripción SOXB1/genética , Células Madre/metabolismo , Factores de Transcripción/genética , Animales , Proteínas de Unión al ADN/biosíntesis , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/virología , Genes myc , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/biosíntesis , Infecciones por Lentivirus/genética , Infecciones por Lentivirus/patología , Infecciones por Lentivirus/virología , Ratones , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Factores de Transcripción SOXB1/biosíntesis , alfa-Amilasas Salivales , Células Madre/citología , Factores de Transcripción/biosíntesis , Dedos de Zinc
2.
Cell ; 134(3): 521-33, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18692474

RESUMEN

MicroRNAs (miRNAs) are crucial for normal embryonic stem (ES) cell self-renewal and cellular differentiation, but how miRNA gene expression is controlled by the key transcriptional regulators of ES cells has not been established. We describe here the transcriptional regulatory circuitry of ES cells that incorporates protein-coding and miRNA genes based on high-resolution ChIP-seq data, systematic identification of miRNA promoters, and quantitative sequencing of short transcripts in multiple cell types. We find that the key ES cell transcription factors are associated with promoters for miRNAs that are preferentially expressed in ES cells and with promoters for a set of silent miRNA genes. This silent set of miRNA genes is co-occupied by Polycomb group proteins in ES cells and shows tissue-specific expression in differentiated cells. These data reveal how key ES cell transcription factors promote the ES cell miRNA expression program and integrate miRNAs into the regulatory circuitry controlling ES cell identity.


Asunto(s)
Células Madre Embrionarias/metabolismo , MicroARNs/genética , Transcripción Genética , Animales , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
3.
Cell Stem Cell ; 2(2): 151-9, 2008 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-18371436

RESUMEN

Pluripotency can be induced in differentiated murine and human cells by retroviral transduction of Oct4, Sox2, Klf4, and c-Myc. We have devised a reprogramming strategy in which these four transcription factors are expressed from doxycycline (dox)-inducible lentiviral vectors. Using these inducible constructs, we derived induced pluripotent stem (iPS) cells from mouse embryonic fibroblasts (MEFs) and found that transgene silencing is a prerequisite for normal cell differentiation. We have analyzed the timing of known pluripotency marker activation during mouse iPS cell derivation and observed that alkaline phosphatase (AP) was activated first, followed by stage-specific embryonic antigen 1 (SSEA1). Expression of Nanog and the endogenous Oct4 gene, marking fully reprogrammed cells, was only observed late in the process. Importantly, the virally transduced cDNAs needed to be expressed for at least 12 days in order to generate iPS cells. Our results are a step toward understanding some of the molecular events governing epigenetic reprogramming.


Asunto(s)
Biomarcadores/metabolismo , Reprogramación Celular/fisiología , Fibroblastos/citología , Lentivirus/genética , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Línea Celular , Epigénesis Genética , Fibroblastos/metabolismo , Regulación Viral de la Expresión Génica , Vectores Genéticos , Humanos , Factor 4 Similar a Kruppel , Ratones , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/genética
4.
Science ; 318(5858): 1920-3, 2007 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-18063756

RESUMEN

It has recently been demonstrated that mouse and human fibroblasts can be reprogrammed into an embryonic stem cell-like state by introducing combinations of four transcription factors. However, the therapeutic potential of such induced pluripotent stem (iPS) cells remained undefined. By using a humanized sickle cell anemia mouse model, we show that mice can be rescued after transplantation with hematopoietic progenitors obtained in vitro from autologous iPS cells. This was achieved after correction of the human sickle hemoglobin allele by gene-specific targeting. Our results provide proof of principle for using transcription factor-induced reprogramming combined with gene and cell therapy for disease treatment in mice. The problems associated with using retroviruses and oncogenes for reprogramming need to be resolved before iPS cells can be considered for human therapy.


Asunto(s)
Anemia de Células Falciformes/terapia , Reprogramación Celular , Fibroblastos/citología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes/citología , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/fisiopatología , Animales , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Recuento de Eritrocitos , Genes myc , Globinas/genética , Hematopoyesis , Hemoglobina A/análisis , Hemoglobina Falciforme/análisis , Humanos , Capacidad de Concentración Renal , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOXB1 , Transactivadores/genética , Transducción Genética
5.
Nature ; 448(7151): 318-24, 2007 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-17554336

RESUMEN

Nuclear transplantation can reprogramme a somatic genome back into an embryonic epigenetic state, and the reprogrammed nucleus can create a cloned animal or produce pluripotent embryonic stem cells. One potential use of the nuclear cloning approach is the derivation of 'customized' embryonic stem (ES) cells for patient-specific cell treatment, but technical and ethical considerations impede the therapeutic application of this technology. Reprogramming of fibroblasts to a pluripotent state can be induced in vitro through ectopic expression of the four transcription factors Oct4 (also called Oct3/4 or Pou5f1), Sox2, c-Myc and Klf4. Here we show that DNA methylation, gene expression and chromatin state of such induced reprogrammed stem cells are similar to those of ES cells. Notably, the cells-derived from mouse fibroblasts-can form viable chimaeras, can contribute to the germ line and can generate live late-term embryos when injected into tetraploid blastocysts. Our results show that the biological potency and epigenetic state of in-vitro-reprogrammed induced pluripotent stem cells are indistinguishable from those of ES cells.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Fibroblastos/citología , Células Madre Pluripotentes/citología , Animales , Quimera/embriología , Quimera/genética , Quimera/crecimiento & desarrollo , Quimera/metabolismo , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Fibroblastos/metabolismo , Silenciador del Gen , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factor 4 Similar a Kruppel , Masculino , Ratones , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Teratoma/metabolismo , Teratoma/patología
6.
Nature ; 441(7091): 349-53, 2006 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-16625203

RESUMEN

The mechanisms by which embryonic stem (ES) cells self-renew while maintaining the ability to differentiate into virtually all adult cell types are not well understood. Polycomb group (PcG) proteins are transcriptional repressors that help to maintain cellular identity during metazoan development by epigenetic modification of chromatin structure. PcG proteins have essential roles in early embryonic development and have been implicated in ES cell pluripotency, but few of their target genes are known in mammals. Here we show that PcG proteins directly repress a large cohort of developmental regulators in murine ES cells, the expression of which would otherwise promote differentiation. Using genome-wide location analysis in murine ES cells, we found that the Polycomb repressive complexes PRC1 and PRC2 co-occupied 512 genes, many of which encode transcription factors with important roles in development. All of the co-occupied genes contained modified nucleosomes (trimethylated Lys 27 on histone H3). Consistent with a causal role in gene silencing in ES cells, PcG target genes were de-repressed in cells deficient for the PRC2 component Eed, and were preferentially activated on induction of differentiation. Our results indicate that dynamic repression of developmental pathways by Polycomb complexes may be required for maintaining ES cell pluripotency and plasticity during embryonic development.


Asunto(s)
Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Represoras/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Metilación de ADN , Embrión de Mamíferos/embriología , Ratones , Complejos Multiproteicos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas del Grupo Polycomb , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba/genética
7.
Proc Natl Acad Sci U S A ; 103(4): 933-8, 2006 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-16418286

RESUMEN

Reproductive cloning is uniformly rejected as a valid technology in humans because of the severely abnormal phenotypes seen in cloned animals. Gene expression aberrations observed in tissues of cloned animals have also raised concerns regarding the therapeutic application of "customized" embryonic stem (ES) cells derived by nuclear transplantation (NT) from a patient's somatic cells. Although previous experiments in mice have demonstrated that the developmental potential of ES cells derived from cloned blastocysts (NT-ES cells) is identical to that of ES cells derived from fertilized blastocysts, a systematic molecular characterization of NT-ES cell lines is lacking. To investigate whether transcriptional aberrations, similar to those observed in tissues of cloned mice, also occur in NT-ES cells, we have compared transcriptional profiles of 10 mouse NT- and fertilization-derived-ES cell lines. We report here that the ES cell lines derived from cloned and fertilized mouse blastocysts are indistinguishable based on their transcriptional profiles, consistent with their normal developmental potential. Our results indicate that, in contrast to embryonic and fetal development of clones, the process of NT-ES cell derivation rigorously selects for those immortal cells that have erased the "epigenetic memory" of the donor nucleus and, thus, become functionally equivalent. Our findings support the notion that ES cell lines derived from cloned or fertilized blastocysts have an identical therapeutic potential.


Asunto(s)
Blastocisto/citología , Clonación de Organismos/métodos , Embrión de Mamíferos/citología , Regulación del Desarrollo de la Expresión Génica , Células Madre/citología , Animales , Blastocisto/metabolismo , Técnicas de Cultivo de Célula/métodos , Núcleo Celular/metabolismo , Análisis por Conglomerados , Epigénesis Genética , Fertilización , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Variación Genética , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Modelos Genéticos , Modelos Estadísticos , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Madre/metabolismo , Transcripción Genética
8.
Cancer Cell ; 8(4): 275-85, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16226703

RESUMEN

Loss of imprinting (LOI), commonly observed in human tumors, refers to loss of monoallelic gene regulation normally conferred by parent-of-origin-specific DNA methylation. To test the function of LOI in tumorigenesis, we developed a model by using transient demethylation to generate imprint-free mouse embryonic stem cells (IF-ES cells). Embryonic fibroblasts derived from IF-ES cells (IF-MEFs) display TGFbeta resistance and reduced p19 and p53 expression and form tumors in SCID mice. IF-MEFs exhibit spontaneous immortalization and cooperate with H-Ras in cellular transformation. Chimeric animals derived from IF-ES cells develop multiple tumors arising from the injected IF-ES cells within 12 months. These data demonstrate that LOI alone can predispose cells to tumorigenesis and identify a pathway through which immortality conferred by LOI lowers the threshold for transformation.


Asunto(s)
Impresión Genómica , Neoplasias Experimentales/patología , Animales , Secuencia de Bases , Línea Celular Transformada , Metilación de ADN , Cartilla de ADN , Mutación de Línea Germinal , Ratones , Neoplasias Experimentales/genética , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...