Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37532127

RESUMEN

OBJECTIVES: Urinary tract infections (UTIs) are primarily caused by uropathogenic Escherichia coli (UPEC). This study aims to elucidate the role of the virulence factor HlyF in the epidemiology and pathophysiology of UTIs and investigate the dissemination of plasmids carrying the hlyF gene. METHODS: An epidemiological analysis was conducted on a representative collection of 225 UPEC strains isolated from community-acquired infections. Selected hlyF+ strains were fully sequenced using a combination of Illumina and Nanopore technologies. To investigate the impact of HlyF, a murine model of UTI was utilized to compare clinical signs, bacterial loads in the bladder, kidney, and spleen, onset of bacteraemia, and inflammation through cytokine quantification among wild-type hlyF+ strains, isogenic mutants, and complemented mutants. RESULTS: Our findings demonstrate that 20% of UPEC encode the HlyF protein. These hlyF+ UPEC strains exhibited enhanced virulence, frequently leading to pyelonephritis accompanied by bloodstream infections. Unlike typical UPEC strains, hlyF+ UPEC strains demonstrate a broader phylogroup distribution and possess a unique array of virulence factors and antimicrobial resistance genes, primarily carried by ColV-like plasmids. In the murine UTI model, expression of HlyF was linked to the UPECs' capacity to induce urosepsis and elicit an exacerbated inflammatory response, setting them apart from typical UPEC strains. DISCUSSION: Overall, our results strongly support the notion that HlyF serves as a significant virulence factor for UPECs, and the dissemination of ColV-like plasmids encoding HlyF warrants further investigation.

2.
Gut Microbes ; 15(1): 2222437, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37312436

RESUMEN

Up to 25% of the E. coli strains isolated from the feces of healthy humans harbor the pks genomic island encoding the synthesis of colibactin, a genotoxic metabolite. Evidence is accumulating for an etiologic role of colibactin in colorectal cancer. Little is known about the conditions of expression of colibactin in the gut. The intestine is characterized by a unique oxygenation profile, with a steep gradient between the physiological hypoxic epithelial surface and the anaerobic lumen, which favors the dominance of obligate anaerobes. Here, we report that colibactin production is maximal under anoxic conditions and decreases with increased oxygen concentration. We show that the aerobic respiration control (ArcA) positively regulates colibactin production and genotoxicity of pks+ E. coli in response to oxygen availability. Thus, colibactin synthesis is inhibited by oxygen, indicating that the pks biosynthetic pathway is adapted to the anoxic intestinal lumen and to the hypoxic infected or tumor tissue.


Asunto(s)
Escherichia coli , Microbioma Gastrointestinal , Humanos , Escherichia coli/genética , Péptidos , Oxígeno
3.
Front Cell Infect Microbiol ; 12: 834895, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061866

RESUMEN

Macroautophagy is a ubiquitous homeostasis and health-promoting recycling process of eukaryotic cells, targeting misfolded proteins, damaged organelles and intracellular infectious agents. Some intracellular pathogens such as Salmonella enterica serovar Typhimurium hijack this process during pathogenesis. Here we investigate potential protein-protein interactions between host transcription factors and secreted effector proteins of Salmonella and their effect on host gene transcription. A systems-level analysis identified Salmonella effector proteins that had the potential to affect core autophagy gene regulation. The effect of a SPI-1 effector protein, SopE, that was predicted to interact with regulatory proteins of the autophagy process, was investigated to validate our approach. We then confirmed experimentally that SopE can directly bind to SP1, a host transcription factor, which modulates the expression of the autophagy gene MAP1LC3B. We also revealed that SopE might have a double role in the modulation of autophagy: Following initial increase of MAP1LC3B transcription triggered by Salmonella infection, subsequent decrease in MAP1LC3B transcription at 6h post-infection was SopE-dependent. SopE also played a role in modulation of the autophagy flux machinery, in particular MAP1LC3B and p62 autophagy proteins, depending on the level of autophagy already taking place. Upon typical infection of epithelial cells, the autophagic flux is increased. However, when autophagy was chemically induced prior to infection, SopE dampened the autophagic flux. The same was also observed when most of the intracellular Salmonella cells were not associated with the SCV (strain lacking sifA) regardless of the autophagy induction status before infection. We demonstrated how regulatory network analysis can be used to better characterise the impact of pathogenic effector proteins, in this case, Salmonella. This study complements previous work in which we had demonstrated that specific pathogen effectors can affect the autophagy process through direct interaction with autophagy proteins. Here we show that effector proteins can also influence the upstream regulation of the process. Such interdisciplinary studies can increase our understanding of the infection process and point out targets important in intestinal epithelial cell defense.


Asunto(s)
Infecciones por Salmonella , Salmonella typhimurium , Autofagia/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Epiteliales/metabolismo , Humanos , Salmonella typhimurium/genética
4.
Emerg Infect Dis ; 28(2): 382-393, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35075992

RESUMEN

Edema disease is an often fatal enterotoxemia caused by specific strains of Shiga toxin-producing Escherichia coli (STEC) that affect primarily healthy, rapidly growing nursery pigs. Recently, outbreaks of edema disease have also emerged in France in wild boars. Analysis of STEC strains isolated from wild boars during 2013-2019 showed that they belonged to the serotype O139:H1 and were positive for both Stx2e and F18 fimbriae. However, in contrast to classical STEC O139:H1 strains circulating in pigs, they also possessed enterotoxin genes sta1 and stb, typical of enterotoxigenic E. coli. In addition, the strains contained a unique accessory genome composition and did not harbor antimicrobial-resistance genes, in contrast to domestic pig isolates. These data thus reveal that the emergence of edema disease in wild boars was caused by atypical hybrid of STEC and enterotoxigenic E. coli O139:H1, which so far has been restricted to the wildlife environment.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Escherichia coli Shiga-Toxigénica , Animales , Células Clonales , Edema , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Sus scrofa , Porcinos
5.
Toxins (Basel) ; 13(12)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34941734

RESUMEN

Colibactin is a genotoxin produced primarily by Escherichia coli harboring the genomic pks island (pks+ E. coli). Pks+ E. coli cause host cell DNA damage, leading to chromosomal instability and gene mutations. The signature of colibactin-induced mutations has been described and found in human colorectal cancer (CRC) genomes. An inflamed intestinal environment drives the expansion of pks+ E. coli and promotes tumorigenesis. Mesalamine (i.e., 5-aminosalycilic acid), an effective anti-inflammatory drug, is an inhibitor of the bacterial polyphosphate kinase (PPK). This drug not only inhibits the production of intestinal inflammatory mediators and the proliferation of CRC cells, but also limits the abundance of E. coli in the gut microbiota and diminishes the production of colibactin. Here, we describe the link between intestinal inflammation and colorectal cancer induced by pks+ E. coli. We discuss the potential mechanisms of the pleiotropic role of mesalamine in treating both inflammatory bowel diseases and reducing the risk of CRC due to pks+ E. coli.


Asunto(s)
Escherichia coli/metabolismo , Mesalamina/farmacología , Neoplasias/inducido químicamente , Neoplasias/prevención & control , Péptidos/toxicidad , Policétidos/toxicidad , Antiinflamatorios no Esteroideos/farmacología , Humanos
6.
Microb Genom ; 7(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33961542

RESUMEN

The pks island codes for the enzymes necessary for synthesis of the genotoxin colibactin, which contributes to the virulence of Escherichia coli strains and is suspected of promoting colorectal cancer. From a collection of 785 human and bovine E. coli isolates, we identified 109 strains carrying a highly conserved pks island, mostly from phylogroup B2, but also from phylogroups A, B1 and D. Different scenarios of pks acquisition were deduced from whole genome sequence and phylogenetic analysis. In the main scenario, pks was introduced and stabilized into certain sequence types (STs) of the B2 phylogroup, such as ST73 and ST95, at the asnW tRNA locus located in the vicinity of the yersiniabactin-encoding High Pathogenicity Island (HPI). In a few B2 strains, pks inserted at the asnU or asnV tRNA loci close to the HPI and occasionally was located next to the remnant of an integrative and conjugative element. In a last scenario specific to B1/A strains, pks was acquired, independently of the HPI, at a non-tRNA locus. All the pks-positive strains except 18 produced colibactin. Sixteen strains contained mutations in clbB or clbD, or a fusion of clbJ and clbK and were no longer genotoxic but most of them still produced low amounts of potentially active metabolites associated with the pks island. One strain was fully metabolically inactive without pks alteration, but colibactin production was restored by overexpressing the ClbR regulator. In conclusion, the pks island is not restricted to human pathogenic B2 strains and is more widely distributed in the E. coli population, while preserving its functionality.


Asunto(s)
Escherichia coli/metabolismo , Mutágenos/metabolismo , Péptidos/metabolismo , Policétidos/metabolismo , Animales , Bovinos , ADN Bacteriano/genética , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Variación Genética , Islas Genómicas , Humanos , Péptidos/genética , Filogenia , Análisis de Secuencia de ADN , Virulencia , Factores de Virulencia/genética
7.
Commun Biol ; 4(1): 498, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893390

RESUMEN

The emergence of new bacterial pathogens is a continuing challenge for agriculture and food safety. Salmonella Typhimurium is a major cause of foodborne illness worldwide, with pigs a major zoonotic reservoir. Two phylogenetically distinct variants, U288 and ST34, emerged in UK pigs around the same time but present different risk to food safety. Here we show using genomic epidemiology that ST34 accounts for over half of all S. Typhimurium infections in people while U288 less than 2%. That the U288 clade evolved in the recent past by acquiring AMR genes, indels in the virulence plasmid pU288-1, and accumulation of loss-of-function polymorphisms in coding sequences. U288 replicates more slowly and is more sensitive to desiccation than ST34 isolates and exhibited distinct pathogenicity in the murine model of colitis and in pigs. U288 infection was more disseminated in the lymph nodes while ST34 were recovered in greater numbers in the intestinal contents. These data are consistent with the evolution of S. Typhimurium U288 adaptation to pigs that may determine their reduced zoonotic potential.


Asunto(s)
Adaptación Biológica , Zoonosis Bacterianas/epidemiología , Salmonelosis Animal/epidemiología , Infecciones por Salmonella/epidemiología , Salmonella typhimurium/fisiología , Salmonella typhimurium/patogenicidad , Animales , Zoonosis Bacterianas/microbiología , Ecosistema , Inglaterra/epidemiología , Infecciones por Salmonella/microbiología , Salmonelosis Animal/microbiología , Virulencia , Gales/epidemiología
8.
mSphere ; 5(6)2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328353

RESUMEN

Colibactin induces DNA damage in mammalian cells and has been linked to the virulence of Escherichia coli and the promotion of colorectal cancer (CRC). By looking for mutants attenuated in the promoter activity of clbB encoding one of the key enzymes for the production of colibactin, we found that a mutant of the gene coding for the polyphosphate kinase (PPK) produced less colibactin than the parental strain. We observed this phenotype in different strains ranging from pathogens responsible for meningitis, urinary tract infection, or mouse colon carcinogenesis to the probiotic Nissle 1917. We confirmed the role of PPK by using an inhibitor of PPK enzymatic activity, mesalamine (also known as 5-aminosalicylic acid). Interestingly, mesalamine has a local anti-inflammatory effect on the epithelial cells of the colon and is used to treat inflammatory bowel disease (IBD). Upon treatment with mesalamine, a decreased genotoxicity of colibactin-producing E. coli was observed both on epithelial cells and directly on purified DNA. This demonstrates the direct effect of mesalamine on bacteria independently from its anti-inflammatory effect on eukaryotic cells. Our results suggest that the mechanisms of action of mesalamine in treating IBD and preventing CRC could also lie in the inhibition of colibactin production. All in all, we demonstrate that PPK is required for the promoter activity of clbB and the production of colibactin, which suggests that PPK is a promising target for the development of anticolibactin and antivirulence strategies.IMPORTANCE Colibactin-producing E. coli induces DNA damage in eukaryotic cells and promotes tumor formation in mouse models of intestinal inflammation. Recent studies have provided strong evidence supporting the causative role of colibactin in human colorectal cancer (CRC) progression. Therefore, it is important to understand the regulation of the production of this genotoxin. Here, we demonstrate that polyphosphate kinase (PPK) is required for the promoter activity of clbB and the production of colibactin. Interestingly, PPK is a multifunctional player in bacterial virulence and stress responses and has been proposed as a new target for developing antimicrobial medicine. We observed inhibition of colibactin production by using a previously identified PPK inhibitor (i.e., mesalamine, an anti-inflammatory drug commonly prescribed for inflammatory bowel diseases). These data brought us a new perspective on the regulatory network of colibactin production and provided us a clue for the development of anticolibactin strategies for CRC treatment/prophylaxis.


Asunto(s)
Escherichia coli/patogenicidad , Mutágenos/metabolismo , Péptidos/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Policétidos/metabolismo , Carcinogénesis , Neoplasias del Colon/microbiología , Daño del ADN , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Virulencia
9.
PLoS Pathog ; 15(9): e1008029, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31545853

RESUMEN

Although Escherichia coli Nissle 1917 (EcN) has been used therapeutically for over a century, the determinants of its probiotic properties remain elusive. EcN produces two siderophore-microcins (Mcc) responsible for an antagonistic activity against other Enterobacteriaceae. EcN also synthesizes the genotoxin colibactin encoded by the pks island. Colibactin is a virulence factor and a putative pro-carcinogenic compound. Therefore, we aimed to decouple the antagonistic activity of EcN from its genotoxic activity. We demonstrated that the pks-encoded ClbP, the peptidase that activates colibactin, is required for the antagonistic activity of EcN. The analysis of a series of ClbP mutants revealed that this activity is linked to the transmembrane helices of ClbP and not the periplasmic peptidase domain, indicating the transmembrane domain is involved in some aspect of Mcc biosynthesis or secretion. A single amino acid substitution in ClbP inactivates the genotoxic activity but maintains the antagonistic activity. In an in vivo salmonellosis model, this point mutant reduced the clinical signs and the fecal shedding of Salmonella similarly to the wild type strain, whereas the clbP deletion mutant could neither protect nor outcompete the pathogen. The ClbP-dependent antibacterial effect was also observed in vitro with other E. coli strains that carry both a truncated form of the Mcc gene cluster and the pks island. In such strains, siderophore-Mcc synthesis also required the glucosyltransferase IroB involved in salmochelin production. This interplay between colibactin, salmochelin, and siderophore-Mcc biosynthetic pathways suggests that these genomic islands were co-selected and played a role in the evolution of E. coli from phylogroup B2. This co-evolution observed in EcN illustrates the fine margin between pathogenicity and probiotic activity, and the need to address both the effectiveness and safety of probiotics. Decoupling the antagonistic from the genotoxic activity by specifically inactivating ClbP peptidase domain opens the way to the safe use of EcN.


Asunto(s)
Escherichia coli/fisiología , Mutágenos/toxicidad , Probióticos/uso terapéutico , Animales , Antibiosis/genética , Antibiosis/fisiología , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bacteriocinas/toxicidad , Vías Biosintéticas/genética , Enterobactina/análogos & derivados , Enterobactina/genética , Enterobactina/fisiología , Enterobactina/toxicidad , Escherichia coli/genética , Escherichia coli/patogenicidad , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Femenino , Genes Bacterianos , Islas Genómicas , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Familia de Multigenes , Mutación , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Péptido Hidrolasas/fisiología , Péptidos/genética , Péptidos/fisiología , Péptidos/toxicidad , Policétidos/toxicidad , Probióticos/toxicidad , Dominios Proteicos , Salmonelosis Animal/microbiología , Salmonelosis Animal/terapia , Salmonella typhimurium , Sideróforos/genética , Sideróforos/fisiología , Sideróforos/toxicidad , Factores de Virulencia/genética , Factores de Virulencia/fisiología , Factores de Virulencia/toxicidad
10.
Front Microbiol ; 10: 1118, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178839

RESUMEN

A multi drug resistant Salmonella enterica 4,[5],12:i- of sequence type 34 (monophasic S. Typhimurium ST34) is a current pandemic clone associated with livestock, particularly pigs, and numerous outbreaks in the human population. A large genomic island, termed SGI-4, is present in the monophasic Typhimurium ST34 clade and absent from other S. Typhimurium strains. SGI-4 consists of 87 open reading frames including sil and pco genes previously implicated in resistance to copper (Cu) and silver, and multiple genes predicted to be involved in mobilization and transfer by conjugation. SGI-4 was excised from the chromosome, circularized, and transferred to recipient strains of S. Typhimurium at a frequency influenced by stress induced by mitomycin C, and oxygen tension. The presence of SGI-4 was associated with increased resistance to Cu, particularly but not exclusively under anaerobic conditions. The presence of silCBA genes, predicted to encode an RND family efflux pump that transports Cu from the periplasm to the external milieu, was sufficient to impart the observed enhanced resistance to Cu, above that commonly associated with S. Typhimurium isolates. The presence of these genes resulted in the absence of Cu-dependent induction of pco genes encoding multiple proteins linked to Cu resistance, also present on SGI-4, suggesting that the system effectively limits the Cu availability in the periplasm, but did not affect SodCI-dependent macrophage survival.

11.
mBio ; 9(3)2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29871914

RESUMEN

This study describes the functional characterization of two proteins, AupA and AupB, which are required for growth on alkanes in the marine hydrocarbonoclastic bacterium Marinobacter hydrocarbonoclasticus The aupA and aupB genes form an operon whose expression was increased upon adhesion to and biofilm formation on n-hexadecane. AupA and AupB are outer and inner membrane proteins, respectively, which are able to interact physically. Mutations in aupA or/and aupB reduced growth on solid paraffin and liquid n-hexadecane, while growth on nonalkane substrates was not affected. In contrast, growth of aup mutants on n-hexadecane solubilized in Brij 58 micelles was completely abolished. Mutant cells had also lost the ability to bind to n-hexadecane solubilized in Brij 58 micelles. These results support the involvement of AupA and AupB in the uptake of micelle-solubilized alkanes and provide the first evidence for a cellular process involved in the micellar uptake pathway. The phylogenetic distribution of the aupAB operon revealed that it is widespread in marine hydrocarbonoclastic bacteria of the orders Oceanospirillales and Alteromonadales and that it is present in high copy number (up to six) in some Alcanivorax strains. These features suggest that Aup proteins probably confer a selective advantage in alkane-contaminated seawater.IMPORTANCE Bacteria are the main actors of the biological removal of hydrocarbons in seawater, and so, it is important to understand how they degrade hydrocarbons and thereby mitigate marine environmental damage. Despite a considerable amount of literature about the dynamic of microbial communities subjected to hydrocarbon exposure and the isolation of strains that degrade hydrocarbons, most of the genetic determinants and molecular mechanisms of bacterial hydrocarbon uptake remain unknown. This study identifies two genes, aupA and aupB, in the hydrocarbonoclastic bacterium Marinobacter hydrocarbonoclasticus that are present frequently in multiple copies in most of the marine hydrocarbon-degrading bacteria for which the genomic sequence is available. AupA and AupB are two novel membrane proteins interacting together that are involved in the uptake of alkanes dissolved in surfactant micelles. The function and the phylogenetic distribution of aupA and aupB suggest that they might be one attribute of the remarkable adaptation of marine hydrocarbonoclastic bacteria that allow them to take advantage of hydrocarbons.


Asunto(s)
Alcanos/metabolismo , Proteínas Bacterianas/metabolismo , Marinobacter/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico , Regulación Bacteriana de la Expresión Génica , Marinobacter/clasificación , Marinobacter/genética , Proteínas de la Membrana/genética , Operón , Filogenia
12.
Infect Immun ; 86(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29784861

RESUMEN

Salmonella enterica serovar Typhimurium is one of approximately 2,500 distinct serovars of the genus Salmonella but is exceptional in its wide distribution in the environment, livestock, and wild animals. S Typhimurium causes a large proportion of nontyphoidal Salmonella (NTS) infections, accounting for a quarter of infections, second only to S. enterica serovar Enteritidis in incidence. S Typhimurium was once considered the archetypal broad-host-range Salmonella serovar due to its wide distribution in livestock and wild animals, and much of what we know of the interaction of Salmonella with the host comes from research using a small number of laboratory strains of the serovar (LT2, SL1344, and ATCC 14028). But it has become clear that these strains do not reflect the genotypic or phenotypic diversity of S Typhimurium. Here, we review the epidemiological record of S Typhimurium and studies of the host-pathogen interactions of diverse strains of S Typhimurium. We present the concept of distinct pathovariants of S Typhimurium that exhibit diversity of host range, distribution in the environment, pathogenicity, and risk to food safety. We review recent evidence from whole-genome sequencing that has revealed the extent of genomic diversity of S Typhimurium pathovariants, the genomic basis of differences in the level of risk to human and animal health, and the molecular epidemiology of prominent strains. An improved understanding of the impact of genome variation of bacterial pathogens on pathogen-host and pathogen-environment interactions has the potential to improve quantitative risk assessment and reveal how new pathogens evolve.


Asunto(s)
Microbiología de Alimentos , Variación Genética , Salmonelosis Animal/microbiología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/clasificación , Salmonella typhimurium/genética , Animales , Variación Biológica Poblacional , Inocuidad de los Alimentos , Genotipo , Especificidad del Huésped , Interacciones Huésped-Patógeno , Humanos , Incidencia , Epidemiología Molecular , Infecciones por Salmonella/epidemiología , Salmonelosis Animal/epidemiología , Salmonella typhimurium/aislamiento & purificación , Salmonella typhimurium/patogenicidad
13.
NPJ Syst Biol Appl ; 3: 31, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29057095

RESUMEN

Salmonella enterica is a prominent bacterial pathogen with implications on human and animal health. Salmonella serovars could be classified as gastro-intestinal or extra-intestinal. Genome-wide comparisons revealed that extra-intestinal strains are closer relatives of gastro-intestinal strains than to each other indicating a parallel evolution of this trait. Given the complexity of the differences, a systems-level comparison could reveal key mechanisms enabling extra-intestinal serovars to cause systemic infections. Accordingly, in this work, we introduce a unique resource, SalmoNet, which combines manual curation, high-throughput data and computational predictions to provide an integrated network for Salmonella at the metabolic, transcriptional regulatory and protein-protein interaction levels. SalmoNet provides the networks separately for five gastro-intestinal and five extra-intestinal strains. As a multi-layered, multi-strain database containing experimental data, SalmoNet is the first dedicated network resource for Salmonella. It comprehensively contains interactions between proteins encoded in Salmonella pathogenicity islands, as well as regulatory mechanisms of metabolic processes with the option to zoom-in and analyze the interactions at specific loci in more detail. Application of SalmoNet is not limited to strain comparisons as it also provides a Salmonella resource for biochemical network modeling, host-pathogen interaction studies, drug discovery, experimental validation of novel interactions, uncovering new pathological mechanisms from emergent properties and epidemiological studies. SalmoNet is available at http://salmonet.org.

14.
Microbiology (Reading) ; 163(5): 669-677, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28535844

RESUMEN

Alkanes are widespread pollutants found in soil, freshwater and marine environments. Marinobacter hydrocarbonoclasticus (Mh) strain SP17 is a marine bacterium able to use many hydrophobic organic compounds, including alkanes, through the production of biofilms that allow their poor solubility to be overcome. This study pointed out that temperature is an environmental factor that strongly affects the biofilm formation and morphology of Mh on the model alkanes, hexadecane and paraffin. We showed that Mh biofilm formation and accumulation of intracytoplasmic inclusions are higher on solid alkanes (hexadecane at 10 °C and paraffin at 10 °C and 30 °C) than on liquid alkane (hexadecane at 30 °C) or soluble substrate (lactate at both temperatures). We also found that Mh produces more extracellular polymeric substances at 30 °C than at 10 °C on alkanes and none on lactate. We observed that bacterial length is significantly higher at 10 °C than at 30 °C on lactate and hexadecane. On paraffin, at 30 °C, the cell morphology is markedly altered by large rounded or irregularly shaped cytoplasmic inclusions. Altogether, the results showed that Mh is able to adapt and use alkanes as a carbon source, even at low temperature.

15.
Environ Microbiol ; 19(1): 159-173, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27727521

RESUMEN

The assimilation of the nearly water insoluble substrates hydrocarbons and lipids by bacteria entails specific adaptations such as the formation of oleolytic biofilms. The present article reports that the extracellular matrix of an oleolytic biofilm formed by Marinobacter hydrocarbonoclasticus at n-hexadecane-water interfaces is largely composed of proteins typically cytoplasmic such as translation factors and chaperones, and a lesser amount of proteins of unknown function that are predicted extra-cytoplasmic. Matrix proteins appear to form a structured film on hydrophobic interfaces and were found mandatory for the development of biofilms on lipids, alkanes and polystyrene. Exo-proteins secreted through the type-2 secretion system (T2SS) were shown to be essential for the formation of oleolytic biofilms on both alkanes and triglycerides. The T2SS effector involved in biofilm formation on triglycerides was identified as a lipase. In the case of biofilm formation on n-hexadecane, the T2SS effector is likely involved in the mass transfer, capture or transport of alkanes. We propose that M. hydrocarbonoclasticus uses cytoplasmic proteins released by cell lysis to form a proteinaceous matrix and dedicated proteins secreted through the T2SS to act specifically in the assimilation pathways of hydrophobic substrates.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas , Citoplasma/metabolismo , Hidrocarburos/metabolismo , Metabolismo de los Lípidos , Marinobacter/fisiología , Sistemas de Secreción Tipo II/metabolismo , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Citoplasma/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Marinobacter/genética , Marinobacter/crecimiento & desarrollo , Sistemas de Secreción Tipo II/genética
16.
Emerg Infect Dis ; 22(4): 617-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26982594

RESUMEN

Microevolution associated with emergence and expansion of new epidemic clones of bacterial pathogens holds the key to epidemiologic success. To determine microevolution associated with monophasic Salmonella Typhimurium during an epidemic, we performed comparative whole-genome sequencing and phylogenomic analysis of isolates from the United Kingdom and Italy during 2005-2012. These isolates formed a single clade distinct from recent monophasic epidemic clones previously described from North America and Spain. The UK monophasic epidemic clones showed a novel genomic island encoding resistance to heavy metals and a composite transposon encoding antimicrobial drug resistance genes not present in other Salmonella Typhimurium isolates, which may have contributed to epidemiologic success. A remarkable amount of genotypic variation accumulated during clonal expansion that occurred during the epidemic, including multiple independent acquisitions of a novel prophage carrying the sopE gene and multiple deletion events affecting the phase II flagellin locus. This high level of microevolution may affect antigenicity, pathogenicity, and transmission.


Asunto(s)
Evolución Clonal/genética , Brotes de Enfermedades , Regulación Bacteriana de la Expresión Génica , Infecciones por Salmonella/epidemiología , Salmonella typhimurium/genética , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Tipificación Bacteriana , Células Clonales , Elementos Transponibles de ADN , Farmacorresistencia Bacteriana Múltiple , Monitoreo Epidemiológico , Flagelina/genética , Flagelina/metabolismo , Variación Genética , Islas Genómicas , Humanos , Italia/epidemiología , Filogenia , Profagos/genética , Profagos/aislamiento & purificación , Infecciones por Salmonella/tratamiento farmacológico , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/transmisión , Salmonella typhimurium/clasificación , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/virología , Reino Unido/epidemiología
17.
PLoS Pathog ; 10(1): e1003874, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24415940

RESUMEN

Expression of genes of the locus of enterocyte effacement (LEE) is essential for adherence of enterohemorrhagic Escherichia coli (EHEC) to intestinal epithelial cells. Gut factors that may modulate LEE gene expression may therefore influence the outcome of the infection. Because nitric oxide (NO) is a critical effector of the intestinal immune response that may induce transcriptional regulation in enterobacteria, we investigated its influence on LEE expression in EHEC O157:H7. We demonstrate that NO inhibits the expression of genes belonging to LEE1, LEE4, and LEE5 operons, and that the NO sensor nitrite-sensitive repressor (NsrR) is a positive regulator of these operons by interacting directly with the RNA polymerase complex. In the presence of NO, NsrR detaches from the LEE1/4/5 promoter regions and does not activate transcription. In parallel, two regulators of the acid resistance pathway, GadE and GadX, are induced by NO through an indirect NsrR-dependent mechanism. In this context, we show that the NO-dependent LEE1 down-regulation is due to absence of NsrR-mediated activation and to the repressor effect of GadX. Moreover, the inhibition of expression of LEE4 and LEE5 by NO is due to loss of NsrR-mediated activation, to LEE1 down-regulation and to GadE up-regulation. Lastly, we establish that chemical or cellular sources of NO inhibit the adherence of EHEC to human intestinal epithelial cells. These results highlight the critical effect of NsrR in the regulation of the LEE pathogenicity island and the potential role of NO in the limitation of colonization by EHEC.


Asunto(s)
Factor de Transcripción de AraC/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/biosíntesis , Islas Genómicas/fisiología , Óxido Nítrico/metabolismo , Factores de Transcripción/biosíntesis , Factor de Transcripción de AraC/genética , Adhesión Bacteriana/fisiología , Proteínas de Unión al ADN/genética , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Células HeLa , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Factores de Transcripción/genética
18.
Vet Immunol Immunopathol ; 152(1-2): 132-40, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23078901

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a foodborne pathogen that resists the acidic gastric environment, colonizes the gut epithelium, and causes hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The genomic island OI-47 of E. coli O157:H7 contains a gene, z1528, encoding an EAL-domain protein potentially involved in c-di-GMP hydrolysis that is absent in non-pathogenic E. coli. This gene, designated vmpA, is co-transcribed with ycdT, which is present in non pathogenic E. coli and encodes a diguanylate cyclase involved in c-di-GMP synthesis. To test for vmpA function, we constructed a vmpA knockout mutant. We also overexpressed vmpA, purified the VmpA protein and assayed for its activity in vitro. We found that VmpA possesses c-di-GMP phosphodiesterase activity and that the vmpA mutation results in increased biofilm formation, and reduced swimming motility, which is consistent with the function determined in vitro. Unexpectedly, suppressor mutations arise frequently in the vmpA background suggesting that VmpA plays an important regulatory role in E. coli O157:H7. These findings represent an example of remarkable flexibility in the organization of c-di-GMP signaling pathways in closely related species.


Asunto(s)
GMP Cíclico/análogos & derivados , Escherichia coli O157/fisiología , Hidrolasas Diéster Fosfóricas/deficiencia , Secuencia de Aminoácidos , Biopelículas/crecimiento & desarrollo , Movimiento Celular/fisiología , GMP Cíclico/metabolismo , Escherichia coli O157/enzimología , Escherichia coli O157/genética , Escherichia coli O157/patogenicidad , Islas Genómicas , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Hibridación de Ácido Nucleico , Hidrolasas Diéster Fosfóricas/metabolismo , ARN/química , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA