Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Invest Ophthalmol Vis Sci ; 65(2): 12, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38319669

RESUMEN

Purpose: To sequence, identify, and perform phylogenetic and recombination analysis on three clinical adenovirus samples taken from the vitreous humor at the Bascom Palmer Eye Institute. Methods: The PacBio Sequel II was used to sequence the genomes of the three clinical adenovirus isolates. To identify the isolates, a full genome-based multiple sequence alignment (MSA) of 722 mastadenoviruses was generated using multiple alignment using fast Fourier transform (MAFFT). MAFFT was also used to generate genome-based human adenovirus B (HAdV-B) MSAs, as well as HAdV-B fiber, hexon, and penton protein-based MSAs. To examine recombination within HAdV-B, RF-Net 2 and Bootscan software programs were used. Results: In the course of classifying three new atypical ocular adenovirus samples, taken from the vitreous humor, we found that all three isolates were HAdV-B species. The three Bascom Palmer HAdV-B genomes were then combined with over 300 HAdV-B genome sequences, including nine ocular HAdV-B genome sequences. Attempts to categorize the penton, hexon, and fiber serotypes using phylogeny of the three Bascom Palmer samples were inconclusive due to incongruence between serotype and phylogeny in the dataset. Recombination analysis using a subset of HAdV-B strains to generate a hybridization network detected recombination between nonhuman primate and human-derived strains, recombination between one HAdV-B strain and the HAdV-E outgroup, and limited recombination between the B1 and B2 clades. Conclusions: The discordance between serotype and phylogeny detected in this study suggests that the current classification system does not accurately describe the natural history and phylogenetic relationships among adenoviruses.


Asunto(s)
Adenoviridae , Adenovirus Humanos , Humanos , Animales , Cuerpo Vítreo , Filogenia , Serogrupo , Adenovirus Humanos/genética , Hexametonio , Recombinación Genética
2.
Exp Eye Res ; 236: 109647, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37689341

RESUMEN

The retinoic acid-inducible gene I (RIG)-I-like receptor (RLR) family of RNA sensor proteins plays a key role in the innate immune response to viral nucleic acids, including viral gene delivery vectors, but little is known about the expression of RLR proteins in the retina. The purpose of this study was to characterize cell-specific expression patterns of RLR proteins in non-human primate (NHP) neural retina tissue and to examine if RLR pathway signaling restricts viral gene delivery transduction. Since RLR protein signaling converges at the mitochondrial antiviral signaling protein (MAVS), experiments were performed to determine if knockdown of MAVS affected FIVGFP transduction efficiency in the human Mueller cell line MIO-M1. Immunoblotting confirmed expression of RIG-I, melanoma differentiation-associated protein 5 (MDA5), laboratory of genetics and physiology 2 (LGP2), and MAVS proteins in MIO-M1 cells and NHP retina tissue. Double label immunofluorescence (IF) studies revealed RIG-I, LGP2, and MAVS were expressed in Mueller microglial cells in the NHP retina. In addition, LGP2 and MDA5 proteins were detected in cone and retinal ganglion cells (RGC). MDA5 was also present in a subset of calretinin positive amacrine cells, and in nuclei within the inner nuclear layer (INL). Knockdown of MAVS significantly increased the transduction efficiency of the lentiviral vector FIVGFP in MIO-M1 cells, compared to control cells. FIVGFP or AAVGFP challenge did not alter expression of the LGP2, MAVS, MDA5 or RIG-I genes in MIO-M1 cells or NHP retina tissue compared to media treated controls. Our data demonstrate that innate immune response proteins involved in viral RNA sensing, including MDA5, RIG-I, LGP2, and MAVS, are expressed in several cell types within the NHP neural retina. In addition, the MAVS protein restricts non-human lentiviral transduction efficiency in MIO-M1 cells.


Asunto(s)
Inmunidad Innata , Transducción de Señal , Animales , Humanos , Retina , Antivirales
3.
Invest Ophthalmol Vis Sci ; 64(10): 16, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37450309

RESUMEN

Purpose: There are limited data on the prevalence and genetic diversity of herpes simplex virus type 1 (HSV-1) virulence genes in ocular isolates. Here, we sequenced 36 HSV-1 ocular isolates, collected by the Bascom Palmer Eye Institute, a university-based eye hospital, from three different ocular anatomical sites (conjunctiva, cornea, and eyelid) and carried out a genomic and phylogenetic analyses. Methods: The PacBio Sequel II long read platform was used for genome sequencing. Phylogenetic analysis and genomic analysis were performed to help better understand genetic variability among common virulence genes in ocular herpetic disease. Results: A phylogenetic network generated using the genome sequences of the 36 Bascom Palmer ocular isolates, plus 174 additional strains showed that ocular isolates do not group together phylogenetically. Analysis of the thymidine kinase and DNA polymerase protein sequences from the Bascom Palmer isolates showed multiple novel single nucleotide polymorphisms, but only one, BP-K14 encoded a known thymidine kinase acyclovir resistance mutation. An analysis of the multiple sequence alignment comprising the 51 total ocular isolates versus 159 nonocular strains detected several possible single nucleotide polymorphisms in HSV-1 genes that were found significantly more often in the ocular isolates. These genes included UL6, gM, VP19c, VHS, gC, VP11/12, and gG. Conclusions: There does not seem to be a specific genetic feature of viruses causing ocular infection. The identification of novel and common recurrent polymorphisms may help to understand the drivers of herpetic pathogenicity and specific factors that may influence the virulence of ocular disease.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Filogenia , Virulencia/genética , Timidina Quinasa/genética , ADN Viral/genética , Polimorfismo de Nucleótido Simple , Factores de Virulencia/genética , Genómica
4.
PLoS One ; 18(6): e0287194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37319284

RESUMEN

Sex related differences in the incidence or severity of infection have been described for multiple viruses. With herpes simplex viruses, the best example is HSV-2 genital infection where women have a higher incidence of infection and can have more severe infections than men. HSV-1 causes several types of infections including skin and mucosal ulcers, keratitis, and encephalitis in humans that do not appear to have a strong biological sex component. Given that mouse strains differ in their MHC loci it is important to determine if sex differences occur in multiple strains of mice. Our goal was to answer two questions: Are virus related sex differences present in BALB/C mice and does virulence of the viral strain have an effect? We generated a panel of recombinant HSV-1 viruses with differing virulence phenotypes and characterized multiple clinical correlates of ocular infection in BALB/c mice. We found no sex-specific differences in blepharitis, corneal clouding, neurovirulence, and viral titers in eye washes. Sex differences in neovascularization, weight loss and eyewash titers were observed for some recombinants, but these were not consistent across the phenotypes tested for any recombinant virus. Considering these findings, we conclude that there are no significant sex specific ocular pathologies in the parameters measured, regardless of the virulence phenotype following ocular infection in BALB/c mice, suggesting that the use of both sexes is not necessary for the bulk of ocular infection studies.


Asunto(s)
Infecciones del Ojo , Herpes Simple , Herpesvirus Humano 1 , Queratitis Herpética , Humanos , Femenino , Masculino , Animales , Ratones , Herpesvirus Humano 1/genética , Ratones Endogámicos BALB C , Ojo/patología , Queratitis Herpética/patología
6.
J Virol ; 97(2): e0008923, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36700640

RESUMEN

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Asunto(s)
Investigación , Virología , Virosis , Humanos , COVID-19/prevención & control , Difusión de la Información , Pandemias/prevención & control , Formulación de Políticas , Investigación/normas , Investigación/tendencias , SARS-CoV-2 , Virología/normas , Virología/tendencias , Virosis/prevención & control , Virosis/virología , Virus
7.
mBio ; 14(1): e0018823, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36700642

RESUMEN

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Virus , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Pandemias/prevención & control , Virus/genética
8.
mSphere ; 8(2): e0003423, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36700653

RESUMEN

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Asunto(s)
COVID-19 , Virus , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Pandemias/prevención & control , Antivirales
9.
J Gen Virol ; 102(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34704922

RESUMEN

Members of the family Herpesviridae have enveloped, spherical virions with characteristic complex structures consisting of symmetrical and non-symmetrical components. The linear, double-stranded DNA genomes of 125-241 kbp contain 70-170 genes, of which 43 have been inherited from an ancestral herpesvirus. In general, herpesviruses have coevolved with and are highly adapted to their hosts, which comprise many mammalian, avian and reptilian species. Following primary infection, they are able to establish lifelong latent infection, during which there is limited viral gene expression. Severe disease is usually observed only in the foetus, the very young, the immunocompromised or following infection of an alternative host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Herpesviridae, which is available at ictv.global/report/herpesviridae.


Asunto(s)
Genoma Viral , Herpesviridae , Animales , Evolución Molecular , Herpesviridae/clasificación , Herpesviridae/genética , Herpesviridae/fisiología , Herpesviridae/ultraestructura , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Adaptación al Huésped , Virión/química , Virión/ultraestructura , Latencia del Virus , Replicación Viral
10.
Exp Eye Res ; 204: 108436, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33440192

RESUMEN

The goal of this study was to determine the expression and distribution of the host restriction factors (RFs) TRIM5α and TRIM11 in non-human primate (NHP) neural retina tissue and the human Muller cell line MIO-M1. In addition, experiments were performed to determine the effect of TRIM5α and TRIM11 knockdown on FIVGFP transduction of MIO-M1 cells with the goal of devising strategies to increase the efficiency of lentiviral (LV) gene delivery. Immunofluorescence (IF) studies indicated that TRIM5α and TRIM11 were localized predominantly in nuclei within the outer nuclear layer (ONL) and inner nuclear layer (INL) of NHP retina tissue. Double label IF indicated that TRIM5α and TRIM11 were localized to some of the retinal Muller cell nuclei. MIO-M1 cells expressed TRIM5α predominantly in the nucleus and TRIM11 primarily in the cytosol. FIVGFP transduction efficiency was significantly increased, at 4 and 7 days post transduction, in TRIM5α and TRIM11 knockdown clones (KD) compared to WT MIO-M1 cells. In addition, pretreatment with the proteasome inhibitor MG132 increased the transduction efficiency of FIVGFP in WT MIO-M1 cells. The nuclear translocation of NF-κB (p65), at 72 h post FIVGFP transduction, was enhanced in TRIM5α and TRIM11 KD clones. The expression of TRIM5α and TRIM11 in macaque neural retina tissue and MIO-M1 cells indicate the presence of these RFs in NHP retina and human Muller cells. Our data indicate that even partial knockdown of TRIM5α or TRIM11, or a short proteasome inhibitor pretreatment, can increase the transduction efficiency of a LV vector.


Asunto(s)
Células Ependimogliales/metabolismo , Regulación de la Expresión Génica/fisiología , Vectores Genéticos/genética , Lentivirus/genética , Retina/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Factores de Restricción Antivirales , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Inhibidores de Cisteína Proteinasa/farmacología , Células Ependimogliales/efectos de los fármacos , Técnica del Anticuerpo Fluorescente Indirecta , Técnicas de Silenciamiento del Gen , Humanos , Immunoblotting , Leupeptinas/farmacología , Macaca mulatta , FN-kappa B/metabolismo , ARN Interferente Pequeño/genética , Retina/efectos de los fármacos , Transducción Genética
11.
BMC Genomics ; 21(1): 436, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32590937

RESUMEN

BACKGROUND: Herpes simplex viruses form a genus within the alphaherpesvirus subfamily, with three identified viral species isolated from Old World monkeys (OWM); Macacine alphaherpesvirus 1 (McHV-1; herpes B), Cercopithecine alphaherpesvirus 2 (SA8), and Papiine alphaherpesvirus 2 (PaHV-2; herpes papio). Herpes B is endemic to macaques, while PaHV-2 and SA8 appear endemic to baboons. All three viruses are genetically and antigenically similar, with SA8 and PaHV-2 thought to be avirulent in humans, while herpes B is a biosafety level 4 pathogen. Recently, next-generation sequencing (NGS) has resulted in an increased number of published OWM herpes simplex genomes, allowing an encompassing phylogenetic analysis. RESULTS: In this study, phylogenetic networks, in conjunction with a genome-based genetic distance cutoff method were used to examine 27 OWM monkey herpes simplex isolates. Genome-based genetic distances were calculated, resulting in distances between lion and pig-tailed simplex viruses themselves, and versus herpes B core strains that were higher than those between PaHV-2 and SA8 (approximately 14 and 10% respectively). The species distance cutoff was determined to be 8.94%, with the method recovering separate species status for PaHV-2 and SA8 and showed that lion and pig-tailed simplex viruses (vs core herpes B strains) were well over the distance species cutoff. CONCLUSIONS: We propose designating lion and pig-tailed simplex viruses as separate, individual viral species, and that this may be the first identification of viral cryptic species.


Asunto(s)
Cercopithecidae/virología , Biología Computacional/métodos , Análisis de Secuencia de ADN/métodos , Simplexvirus/clasificación , Animales , Variación Genética , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Simplexvirus/genética , Simplexvirus/aislamiento & purificación
12.
PLoS One ; 14(5): e0217890, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31145764

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0076267.].

13.
PLoS One ; 14(1): e0210396, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30615684

RESUMEN

Triacylglycerol synthesis is catalyzed by acyl CoA:diacylglycerol acyltransferase-2 (DGAT2). DGAT2 is an integral membrane protein that is localized to the endoplasmic reticulum and interacts with lipid droplets. Using BioId, a method to detect proximal and interacting proteins, we identified calnexin as a DGAT2-interacting protein. Co-immunoprecipitation and proximity ligation assays confirmed this finding. We found that calnexin-deficient mouse embryonic fibroblasts had reduced intracellular triacylglycerol levels and fewer large lipid droplets (>1.0 µm2 area). Despite the alterations in triacylglycerol metabolism, in vitro DGAT2 activity, localization and protein stability were not affected by the absence of calnexin.


Asunto(s)
Calnexina/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Retículo Endoplásmico/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Humanos , Ratones , Triglicéridos/metabolismo
14.
J Neuroimmunol ; 322: 26-35, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29954626

RESUMEN

The purpose of this study was to characterize cell-specific expression patterns of Toll-like receptors (TLR) in non-human primate (NHP) neural retina tissue. TLR 4, 5, 6, and 7 proteins were detected by immunblotting of macaque retina tissue lysates and quantitative PCR (qPCR) demonstrated TLRs 4-7 mRNA expression. Immunofluorescence (IF) microscopy detected TLRs 4-7 in multiple cell types in macaque neural retina including Muller, retinal ganglion cells (RGC), amacrine, and bipolar cells. These results demonstrate that TLRs 4-7 are constitutively expressed by neurons in the NHP retina raising the possibility that these cells could be involved in retinal innate inflammatory responses.


Asunto(s)
Proteínas del Ojo/biosíntesis , Macaca fascicularis/metabolismo , Macaca mulatta/metabolismo , Neuronas/metabolismo , Retina/citología , Receptores Toll-Like/biosíntesis , Células Amacrinas/metabolismo , Animales , Western Blotting , Células Ependimogliales/metabolismo , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Inmunidad Innata , Reacción en Cadena de la Polimerasa , Retina/inmunología , Retina/metabolismo , Células Bipolares de la Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Receptores Toll-Like/genética
15.
Virology ; 518: 385-397, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29605685

RESUMEN

Feline herpes virus type 1 (FHV-1) is widely considered to be the leading cause of ocular disease in cats and has been implicated in upper respiratory tract infections. Little, however is known about interstrain phylogenetic relationships, and details of the genomic structure. For the present study, twenty-six FHV-1 isolates from different cats in animal shelters were collected from eight separate locations in the USA, and the genomes sequenced. Genomic characterization of these isolates includied short sequence repeat (SSR) detection, with fewer SSRs detected, compared to herpes simplex viruses type 1 and 2. For phylogenetic and recombination analysis, 27 previously sequenced isolates of FHV-1 were combined with the 26 strains sequenced for the present study. The overall genomic interstrain genetic distance between all available isolates was 0.093%. Phylogenetic analysis identified four main FHV-1 clades primarily corresponding to geographical collection site. Recombination analysis suggested that interclade recombination has occurred.


Asunto(s)
Variación Genética , Genoma Viral , Filogenia , Recombinación Genética , Varicellovirus/clasificación , Varicellovirus/genética , Animales , Enfermedades de los Gatos/virología , Gatos , Salud Global , Infecciones por Herpesviridae/veterinaria , Análisis de Secuencia de ADN , Varicellovirus/aislamiento & purificación
16.
Invest Ophthalmol Vis Sci ; 59(1): 298-310, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29340644

RESUMEN

Purpose: To determine if proteasome inhibition using MG132 increased the efficiency of FIV vector-mediated transduction in human trabecular meshwork (TM)-1 cells and monkey organ-cultured anterior segments (MOCAS). Methods: TM-1 cells were pretreated for 1 hour with 0.5% dimethyl sulfoxide (DMSO; vehicle control) or 5 to 50 µM MG132 and transduced with FIV.GFP (green fluorescent protein)- or FIV.mCherry-expressing vector at a multiplicity of transduction (MOT) of 20. At 24 hours, cells were fixed and stained with antibodies for GFP, and positive cells were counted, manually or by fluorescence-activated cell sorting (FACS). Cells transduced with FIV.GFP particles alone were used as controls. The effect of 20 µM MG132 treatment on high- and low-dose (2 × 107 and 0.8 × 107 transducing units [TU], respectively) FIV.GFP transduction with or without MG132 was also evaluated in MOCAS using fluorescence microscopy. Vector genome equivalents in cells and tissues were quantified by quantitative (q)PCR on DNA. Results: In the MG132 treatment groups, there was a significant dose-dependent increase in the percentage of transduced cells at all concentrations tested. Vector genome equivalents were also increased in TM-1 cells treated with MG132. Increased FIV.GFP expression in the TM was also observed in MOCAS treated with 20 µM MG132 and the high dose of vector. Vector genome equivalents were also significantly increased in the MOCAS tissues. Increased transduction was not seen with the low dose of virus. Conclusions: Proteasome inhibition increased the transduction efficiency of FIV particles in TM-1 cells and MOCAS and may be a useful adjunct for delivery of therapeutic genes to the TM by lentiviral vectors.


Asunto(s)
Inhibidores de Cisteína Proteinasa/farmacología , Vectores Genéticos , Virus de la Inmunodeficiencia Felina/genética , Leupeptinas/farmacología , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Malla Trabecular/metabolismo , Transducción Genética , Animales , Segmento Anterior del Ojo/metabolismo , Células Cultivadas , Citometría de Flujo , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Humanos , Macaca mulatta , Técnicas de Cultivo de Órganos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección
17.
BMC Genomics ; 18(1): 887, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29157201

RESUMEN

BACKGROUND: The varicelloviruses comprise a genus within the alphaherpesvirus subfamily, and infect both humans and other mammals. Recently, next-generation sequencing has been used to generate genomic sequences of several members of the Varicellovirus genus. Here, currently available varicellovirus genomic sequences were used for phylogenetic, recombination, and genetic distance analysis. RESULTS: A phylogenetic network including genomic sequences of individual species, was generated and suggested a potential restriction between the ungulate and non-ungulate viruses. Intraspecies genetic distances were higher in the ungulate viruses (pseudorabies virus (SuHV-1) 1.65%, bovine herpes virus type 1 (BHV-1) 0.81%, equine herpes virus type 1 (EHV-1) 0.79%, equine herpes virus type 4 (EHV-4) 0.16%) than non-ungulate viruses (feline herpes virus type 1 (FHV-1) 0.0089%, canine herpes virus type 1 (CHV-1) 0.005%, varicella-zoster virus (VZV) 0.136%). The G + C content of the ungulate viruses was also higher (SuHV-1 73.6%, BHV-1 72.6%, EHV-1 56.6%, EHV-4 50.5%) compared to the non-ungulate viruses (FHV-1 45.8%, CHV-1 31.6%, VZV 45.8%), which suggests a possible link between G + C content and intraspecies genetic diversity. Varicellovirus clade nomenclature is variable across different species, and we propose a standardization based on genomic genetic distance. A recent study reported no recombination between sequenced FHV-1 strains, however in the present study, both splitstree, bootscan, and PHI analysis indicated recombination. We also found that the recently sequenced Brazilian CHV-1 strain BTU-1 may contain a genetic signal in the UL50 gene from an unknown varicellovirus. CONCLUSION: Together, the data contribute to a greater understanding of varicellovirus genomics, and we also suggest a new clade nomenclature scheme based on genetic distances.


Asunto(s)
Varicellovirus/clasificación , Varicellovirus/genética , Composición de Base , Codón , Herpesvirus Bovino 1/clasificación , Herpesvirus Bovino 1/genética , Herpesvirus Équido 1/clasificación , Herpesvirus Équido 1/genética , Herpesvirus Équido 4/clasificación , Herpesvirus Équido 4/genética , Mutación , Filogenia , Recombinación Genética
18.
J Ocul Biol ; 4(2)2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27896297

RESUMEN

Staphylococcus aureus infection of the cornea is a significant threat to vision. The percentage of bacterial isolates resistant to antibiotics is increasing as is the percentage of infections caused by methicillin resistant isolates. There is a critical need for additional therapeutic approaches and their development will require the use of animal models to test efficacy. Two mouse models of S. aureus keratitis have been described but only quantified stromal keratitis (corneal clouding and perforation). We have extended these models using the methicillin resistant S. aureus USA300 LAC strain and show that eyelid inflammation and swelling (blepharitis) and corneal neovascularization can be quantified. This expanded model should prove useful in assessing additional effects of antibacterial therapies and additional pathological mechanisms involved in bacterial ocular infection.

19.
Biochem J ; 473(20): 3621-3637, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27531967

RESUMEN

Acyl-CoA:1,2-diacylglycerol acyltransferase (DGAT)-2 is one of the two DGAT enzymes that catalyzes the synthesis of triacylglycerol, which is an important form of stored energy for eukaryotic organisms. There is currently limited information available regarding how DGAT2 and triacylglycerol synthesis are regulated. Recent studies have indicated that DGAT2 can be regulated by changes in gene expression. How DGAT2 is regulated post-transcriptionally remains less clear. In this study, we demonstrated that DGAT2 is a very unstable protein and is rapidly degraded in an ubiquitin-dependent manner via the proteasome. Many of the 25 lysines present in DGAT2 appeared to be involved in promoting its degradation. However, the six C-terminal lysines were the most important in regulating stability. We also demonstrated that acyl-CoA:monoacylglycerol acyltransferase (MGAT)-2, an enzyme with extensive sequence homology to DGAT2 that catalyzes the synthesis of diacylglycerol, was also ubiquitinated. However, MGAT2 was found to be much more stable than DGAT2. Interestingly, when co-expressed, MGAT2 appeared to stabilize DGAT2. Finally, we found that both DGAT2 and MGAT2 are substrates of the endoplasmic reticulum-associated degradation pathway.


Asunto(s)
Aciltransferasas/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ubiquitinadas/metabolismo , Aciltransferasas/genética , Animales , Células COS , Diacilglicerol O-Acetiltransferasa/genética , Diglicéridos/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Inmunoprecipitación , Microscopía Fluorescente , Proteínas Ubiquitinadas/genética
20.
J Virol ; 90(18): 8115-31, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27384650

RESUMEN

UNLABELLED: Herpes simplex virus 1 (HSV-1) most commonly causes recrudescent labial ulcers; however, it is also the leading cause of infectious blindness in developed countries. Previous research in animal models has demonstrated that the severity of HSV-1 ocular disease is influenced by three main factors: host innate immunity, host immune response, and viral strain. We have previously shown that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) results in recombinants with a wide range of ocular disease phenotype severity. Recently, we developed a quantitative trait locus (QTL)-based computational approach (vQTLmap) to identify viral single nucleotide polymorphisms (SNPs) predicted to influence the severity of the ocular disease phenotypes. We have now applied vQTLmap to identify HSV-1 SNPs associated with corneal neovascularization and mean peak percentage weight loss (MPWL) using 65 HSV-1 OD4-CJ994 recombinants. The vQTLmap analysis using Random Forest for neovascularization identified phenotypically meaningful nonsynonymous SNPs in the ICP4, UL41 (VHS), UL42, UL46 (VP11/12), UL47 (VP13/14), UL48 (VP22), US3, US4 (gG), US6 (gD), and US7 (gI) coding regions. The ICP4 gene was previously identified as a corneal neovascularization determinant, validating the vQTLmap method. Further analysis detected an epistatic interaction for neovascularization between a segment of the unique long (UL) region and a segment of the inverted repeat short (IRS)/unique short (US) region. Ridge regression was used to identify MPWL-associated nonsynonymous SNPs in the UL1 (gL), UL2, UL4, UL49 (VP22), UL50, and ICP4 coding regions. The data provide additional insights into virulence gene and epistatic interaction discovery in HSV-1. IMPORTANCE: Herpes simplex virus 1 (HSV-1) typically causes recurrent cold sores; however, it is also the leading source of infectious blindness in developed countries. Corneal neovascularization is critical for the progression of blinding ocular disease, and weight loss is a measure of infection severity. Previous HSV-1 animal virulence studies have shown that the severity of ocular disease is partially due to the viral strain. In the current study, we used a recently described computational quantitative trait locus (QTL) approach in conjunction with 65 HSV-1 recombinants to identify viral single nucleotide polymorphisms (SNPs) involved in neovascularization and weight loss. Neovascularization SNPs were identified in the ICP4, VHS, UL42, VP11/12, VP13/14, VP22, gG, US3, gD, and gI genes. Further analysis revealed an epistatic interaction between the UL and US regions. MPWL-associated SNPs were detected in the UL1 (gL), UL2, UL4, VP22, UL50, and ICP4 genes. This approach will facilitate future HSV virulence studies.


Asunto(s)
Neovascularización de la Córnea/patología , Epistasis Genética , Genes Virales , Herpes Simple/patología , Herpesvirus Humano 1/patogenicidad , Factores de Virulencia/genética , Pérdida de Peso , Animales , Sitios Genéticos , Herpes Simple/virología , Ratones , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...