Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 13(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924486

RESUMEN

Oncogenic mutations in RAS family genes arise frequently in metastatic human cancers. Here we developed new mouse and cellular models of oncogenic HrasG12V-driven undifferentiated pleomorphic sarcoma metastasis and of KrasG12D-driven pancreatic ductal adenocarcinoma metastasis. Through analyses of these cells and of human oncogenic KRAS-, NRAS- and BRAF-driven cancer cell lines we identified that resistance to single MEK inhibitor and ERK inhibitor treatments arise rapidly but combination therapy completely blocks the emergence of resistance. The prior evolution of resistance to either single agent frequently leads to resistance to dual treatment. Dual MEK inhibitor plus ERK inhibitor therapy shows anti-tumor efficacy in an HrasG12V-driven autochthonous sarcoma model but features of drug resistance in vivo were also evident. Array-based kinome activity profiling revealed an absence of common patterns of signaling rewiring in single or double MEK and ERK inhibitor resistant cells, showing that the development of resistance to downstream signaling inhibition in oncogenic RAS-driven tumors represents a heterogeneous process. Nonetheless, in some single and double MEK and ERK inhibitor resistant cell lines we identified newly acquired drug sensitivities. These may represent additional therapeutic targets in oncogenic RAS-driven tumors and provide general proof-of-principle that therapeutic vulnerabilities of drug resistant cells can be identified.

2.
Nat Commun ; 12(1): 734, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531470

RESUMEN

Driver genes with a mutually exclusive mutation pattern across tumor genomes are thought to have overlapping roles in tumorigenesis. In contrast, we show here that mutually exclusive prostate cancer driver alterations involving the ERG transcription factor and the ubiquitin ligase adaptor SPOP are synthetic sick. At the molecular level, the incompatible cancer pathways are driven by opposing functions in SPOP. ERG upregulates wild type SPOP to dampen androgen receptor (AR) signaling and sustain ERG activity through degradation of the bromodomain histone reader ZMYND11. Conversely, SPOP-mutant tumors stabilize ZMYND11 to repress ERG-function and enable oncogenic androgen receptor signaling. This dichotomy regulates the response to therapeutic interventions in the AR pathway. While mutant SPOP renders tumor cells susceptible to androgen deprivation therapies, ERG promotes sensitivity to high-dose androgen therapy and pharmacological inhibition of wild type SPOP. More generally, these results define a distinct class of antagonistic cancer drivers and a blueprint toward their therapeutic exploitation.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Represoras/metabolismo , Regulador Transcripcional ERG/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Inmunohistoquímica , Inmunoprecipitación , Masculino , Ratones , Ratones Desnudos , Mutación/genética , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Neoplasias de la Próstata/genética , Unión Proteica , Proteómica , Receptores Androgénicos/metabolismo , Proteínas Represoras/genética , Transducción de Señal/fisiología , Regulador Transcripcional ERG/genética , Complejos de Ubiquitina-Proteína Ligasa/genética
3.
Nat Commun ; 11(1): 5549, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144576

RESUMEN

Advanced prostate cancer initially responds to hormonal treatment, but ultimately becomes resistant and requires more potent therapies. One mechanism of resistance observed in around 10-20% of these patients is lineage plasticity, which manifests in a partial or complete small cell or neuroendocrine prostate cancer (NEPC) phenotype. Here, we investigate the role of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex in NEPC. Using large patient datasets, patient-derived organoids and cancer cell lines, we identify mSWI/SNF subunits that are deregulated in NEPC and demonstrate that SMARCA4 (BRG1) overexpression is associated with aggressive disease. We also show that SWI/SNF complexes interact with different lineage-specific factors in NEPC compared to prostate adenocarcinoma. These data point to a role for mSWI/SNF complexes in therapy-related lineage plasticity, which may also be relevant for other solid tumors.


Asunto(s)
Linaje de la Célula , Plasticidad de la Célula , Proteínas Cromosómicas no Histona/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Factores de Transcripción/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Línea Celular Tumoral , Estudios de Cohortes , ADN Helicasas/genética , ADN Helicasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Modelos Biológicos , Invasividad Neoplásica , Proteínas de Neoplasias/metabolismo , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias de la Próstata/genética , Subunidades de Proteína/metabolismo , Factores de Transcripción/genética , Transcriptoma/genética
4.
Oncotarget ; 9(28): 19753-19766, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29731980

RESUMEN

Soft tissue sarcomas are rare mesenchymal tumours accounting for 1% of adult malignancies and are fatal in approximately one third of patients. Two of the most aggressive and lethal forms of soft tissue sarcomas are angiosarcomas and undifferentiated pleomorphic sarcomas (UPS). To examine sarcoma-relevant molecular pathways, we employed a lentiviral gene regulatory system to attempt to generate in vivo models that reflect common molecular alterations of human angiosarcoma and UPS. Mice were intraveneously injected with MuLE lentiviruses expressing combinations of shRNA against Cdkn2a, Trp53, Tsc2 and Pten with or without expression of HrasG12V , PIK3CAH1047R or Myc. The systemic injection of an ecotropic lentivirus expressing oncogenic HrasG12V together with the knockdown of Cdkn2a or Trp53 was sufficient to initiate angiosarcoma and/or UPS development, providing a flexible system to generate autochthonous mouse models of these diseases. Unexpectedly, different mouse strains developed different types of sarcoma in response to identical genetic drivers, implicating genetic background as a contributor to the genesis and spectrum of sarcomas.

5.
PLoS One ; 12(10): e0186102, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28982163

RESUMEN

The uterine corpus represents the most common site for tumour development in the female genital system. Uterine neoplasms are categorised as epithelial, mesenchymal, mixed epithelial-mesenchymal or trophoblastic tumours. In this study we employed a mouse genetic approach using the MuLE lentiviral gene regulatory system to functionally test the ability of ecotropic lentiviruses to model epithelial and mesenchymal uterine malignancies ex vivo and in vivo. We discovered that MuLE lentiviruses efficiently infect uterine stromal cells but not endometrial epithelial cells when injected into the uterus of cycling, pseudopregnant or ovarectomized mice. Consistent with this cellular infection spectrum, we show that intra-uterine injection of ecotropic MuLE viruses expressing oncogenic HrasG12V together with knockdown of Cdkn2a induce high-grade endometrial stromal sarcomas. These findings establish this approach as an efficient method of generating autochthonous mouse models of uterine sarcomas and in general for performing genetic manipulations of uterine stromal cells in vivo.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Neoplasias Endometriales/genética , Genes ras , Vectores Genéticos , Lentivirus/genética , Sarcoma Estromático Endometrial/genética , Animales , Línea Celular Tumoral , Neoplasias Endometriales/patología , Femenino , Técnicas de Silenciamiento del Gen , Ratones , Ratones SCID , Sarcoma Estromático Endometrial/patología
6.
J Clin Invest ; 125(4): 1603-19, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25751063

RESUMEN

Here, we describe the multiple lentiviral expression (MuLE) system that allows multiple genetic alterations to be introduced simultaneously into mammalian cells. We created a toolbox of MuLE vectors that constitute a flexible, modular system for the rapid engineering of complex polycistronic lentiviruses, allowing combinatorial gene overexpression, gene knockdown, Cre-mediated gene deletion, or CRISPR/Cas9-mediated (where CRISPR indicates clustered regularly interspaced short palindromic repeats) gene mutation, together with expression of fluorescent or enzymatic reporters for cellular assays and animal imaging. Examples of tumor engineering were used to illustrate the speed and versatility of performing combinatorial genetics using the MuLE system. By transducing cultured primary mouse cells with single MuLE lentiviruses, we engineered tumors containing up to 5 different genetic alterations, identified genetic dependencies of molecularly defined tumors, conducted genetic interaction screens, and induced the simultaneous CRISPR/Cas9-mediated knockout of 3 tumor-suppressor genes. Intramuscular injection of MuLE viruses expressing oncogenic H-RasG12V together with combinations of knockdowns of the tumor suppressors cyclin-dependent kinase inhibitor 2A (Cdkn2a), transformation-related protein 53 (Trp53), and phosphatase and tensin homolog (Pten) allowed the generation of 3 murine sarcoma models, demonstrating that genetically defined autochthonous tumors can be rapidly generated and quantitatively monitored via direct injection of polycistronic MuLE lentiviruses into mouse tissues. Together, our results demonstrate that the MuLE system provides genetic power for the systematic investigation of the molecular mechanisms that underlie human diseases.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Clonación Molecular/métodos , Vectores Genéticos , Lentivirus/genética , Animales , Apoptosis , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Doxiciclina/farmacología , Resistencia a Medicamentos/genética , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Ratones , Ratones SCID , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , ARN Interferente Pequeño/genética , Recombinación Genética , Proteína de Retinoblastoma/antagonistas & inhibidores , Proteína de Retinoblastoma/genética , Sarcoma Experimental/genética , Sarcoma Experimental/terapia , Transducción Genética , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...