Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 595(7869): 657-660, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34321670

RESUMEN

The innermost regions of accretion disks around black holes are strongly irradiated by X-rays that are emitted from a highly variable, compact corona, in the immediate vicinity of the black hole1-3. The X-rays that are seen reflected from the disk4, and the time delays, as variations in the X-ray emission echo or 'reverberate' off the disk5,6, provide a view of the environment just outside the event horizon. I Zwicky 1 (I Zw 1) is a nearby narrow-line Seyfert 1 galaxy7,8. Previous studies of the reverberation of X-rays from its accretion disk revealed that the corona is composed of two components: an extended, slowly varying component extending over the surface of the inner accretion disk, and a collimated core, with luminosity fluctuations propagating upwards from its base, which dominates the more rapid variability9,10. Here we report observations of X-ray flares emitted from around the supermassive black hole in I Zw 1. X-ray reflection from the accretion disk is detected through a relativistically broadened iron K line and Compton hump in the X-ray emission spectrum. Analysis of the X-ray flares reveals short flashes of photons consistent with the re-emergence of emission from behind the black hole. The energy shifts of these photons identify their origins from different parts of the disk11,12. These are photons that reverberate off the far side of the disk, and are bent around the black hole and magnified by the strong gravitational field. Observing photons bent around the black hole confirms a key prediction of general relativity.

2.
Nature ; 568(7751): 198-201, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30971846

RESUMEN

Mergers of neutron stars are known to be associated with short γ-ray bursts1-4. If the neutron-star equation of state is sufficiently stiff (that is, the pressure increases sharply as the density increases), at least some such mergers will leave behind a supramassive or even a stable neutron star that spins rapidly with a strong magnetic field5-8 (that is, a magnetar). Such a magnetar signature may have been observed in the form of the X-ray plateau that follows up to half of observed short γ-ray bursts9,10. However, it has been expected that some X-ray transients powered by binary neutron-star mergers may not be associated with a short γ-ray burst11,12. A fast X-ray transient (CDF-S XT1) was recently found to be associated with a faint host galaxy, the redshift of which is unknown13. Its X-ray and host-galaxy properties allow several possible explanations including a short γ-ray burst seen off-axis, a low-luminosity γ-ray burst at high redshift, or a tidal disruption event involving an intermediate-mass black hole and a white dwarf13. Here we report a second X-ray transient, CDF-S XT2, that is associated with a galaxy at redshift z = 0.738 (ref. 14). The measured light curve is fully consistent with the X-ray transient being powered by a millisecond magnetar. More intriguingly, CDF-S XT2 lies in the outskirts of its star-forming host galaxy with a moderate offset from the galaxy centre, as short γ-ray bursts often do15,16. The estimated event-rate density of similar X-ray transients, when corrected to the local value, is consistent with the event-rate density of binary neutron-star mergers that is robustly inferred from the detection of the gravitational-wave event GW170817.

3.
Mon Not R Astron Soc ; 490(4): 4536-4564, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33353990

RESUMEN

We present X-ray spectra spanning 18 yr of evolution for SN 1996cr, one of the five nearest SNe detected in the modern era. Chandra HETG exposures in 2000, 2004, and 2009 allow us to resolve spectrally the velocity profiles of Ne, Mg, Si, S, and Fe emission lines and monitor their evolution as tracers of the ejecta-circumstellar medium interaction. To explain the diversity of X-ray line profiles, we explore several possible geometrical models. Based on the highest signal-to-noise 2009 epoch, we find that a polar geometry with two distinct opening angle configurations and internal obscuration can successfully reproduce all of the observed line profiles. The best-fitting model consists of two plasma components: (1) a mildly absorbed (2 × 1021 cm-2), cooler (≈2 keV) with high Ne, Mg, Si, and S abundances associated with a wide polar interaction region (half-opening angle ≈58°); (2) a moderately absorbed (2 × 1022 cm-2), hotter (≳20 keV) plasma with high Fe abundances and strong internal obscuration associated with a narrow polar interaction region (half-opening angle ≈20°). We extend this model to seven further epochs with lower signal-to-noise ratio and/or lower spectral-resolution between 2000 and 2018, yielding several interesting trends in absorption, flux, geometry, and expansion velocity. We argue that the hotter and colder components are associated with reflected and forward shocks, respectively, at least at later epochs. We discuss the physical implications of our results and plausible explosion scenarios to understand the X-ray data of SN 1996cr.

4.
Proc Natl Acad Sci U S A ; 107(16): 7184-9, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20404160

RESUMEN

Extragalactic X-ray surveys over the past decade have dramatically improved understanding of the majority populations of active galactic nuclei (AGNs) over most of the history of the universe. Here we briefly highlight some of the exciting discoveries about AGN demography, physics, and ecology, with a focus on results from Chandra. We also discuss some key unresolved questions and future prospects.

5.
Nature ; 464(7287): 380-3, 2010 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-20237563

RESUMEN

The most distant quasars known, at redshifts z approximately 6, generally have properties indistinguishable from those of lower-redshift quasars in the rest-frame ultraviolet/optical and X-ray bands. This puzzling result suggests that these distant quasars are evolved objects even though the Universe was only seven per cent of its current age at these redshifts. Recently one z approximately 6 quasar was shown not to have any detectable emission from hot dust, but it was unclear whether that indicated different hot-dust properties at high redshift or if it is simply an outlier. Here we report the discovery of a second quasar without hot-dust emission in a sample of 21 z approximately 6 quasars. Such apparently hot-dust-free quasars have no counterparts at low redshift. Moreover, we demonstrate that the hot-dust abundance in the 21 quasars builds up in tandem with the growth of the central black hole, whereas at low redshift it is almost independent of the black hole mass. Thus z approximately 6 quasars are indeed at an early evolutionary stage, with rapid mass accretion and dust formation. The two hot-dust-free quasars are likely to be first-generation quasars born in dust-free environments and are too young to have formed a detectable amount of hot dust around them.

6.
Nature ; 459(7246): 540-2, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19478778

RESUMEN

Since the 1995 discovery of the broad iron K-line emission from the Seyfert galaxy MCG-6-30-15 (ref. 1), broad iron K lines have been found in emission from several other Seyfert galaxies, from accreting stellar-mass black holes and even from accreting neutron stars. The iron K line is prominent in the reflection spectrum created by the hard-X-ray continuum irradiating dense accreting matter. Relativistic distortion of the line makes it sensitive to the strong gravity and spin of the black hole. The accompanying iron L-line emission should be detectable when the iron abundance is high. Here we report the presence of both iron K and iron L emission in the spectrum of the narrow-line Seyfert 1 galaxy 1H 0707-495. The bright iron L emission has enabled us to detect a reverberation lag of about 30 s between the direct X-ray continuum and its reflection from matter falling into the black hole. The observed reverberation timescale is comparable to the light-crossing time of the innermost radii around a supermassive black hole. The combination of spectral and timing data on 1H 0707-495 provides strong evidence that we are witnessing emission from matter within a gravitational radius, or a fraction of a light minute, from the event horizon of a rapidly spinning, massive black hole.


Asunto(s)
Medio Ambiente Extraterrestre/química , Hierro/análisis , Hierro/química
7.
Nature ; 434(7034): 738-40, 2005 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-15815623

RESUMEN

The tight relationship between the masses of black holes and galaxy spheroids in nearby galaxies implies a causal connection between the growth of these two components. Optically luminous quasars host the most prodigious accreting black holes in the Universe, and can account for greater than or approximately equal to 30 per cent of the total cosmological black-hole growth. As typical quasars are not, however, undergoing intense star formation and already host massive black holes (> 10(8)M(o), where M(o) is the solar mass), there must have been an earlier pre-quasar phase when these black holes grew (mass range approximately (10(6)-10(8))M(o)). The likely signature of this earlier stage is simultaneous black-hole growth and star formation in distant (redshift z > 1; >8 billion light years away) luminous galaxies. Here we report ultra-deep X-ray observations of distant star-forming galaxies that are bright at submillimetre wavelengths. We find that the black holes in these galaxies are growing almost continuously throughout periods of intense star formation. This activity appears to be more tightly associated with these galaxies than any other coeval galaxy populations. We show that the black-hole growth from these galaxies is consistent with that expected for the pre-quasar phase.

8.
Nature ; 413(6851): 45-8, 2001 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-11544519

RESUMEN

The nuclei of most galaxies are now believed to harbour supermassive black holes. The motions of stars in the central few light years of our Milky Way Galaxy indicate the presence of a dark object with a mass of about 2.6 x 106 solar masses (refs 2, 3). This object is spatially coincident with the compact radio source Sagittarius A* (Sgr A*) at the dynamical centre of the Galaxy, and the radio emission is thought to be powered by the gravitational potential energy released by matter as it accretes onto a supermassive black hole. Sgr A* is, however, much fainter than expected at all wavelengths, especially in X-rays, which has cast some doubt on this model. The first strong evidence for X-ray emission was found only recently. Here we report the discovery of rapid X-ray flaring from the direction of Sgr A*, which, together with the previously reported steady X-ray emission, provides compelling evidence that the emission is coming from the accretion of gas onto a supermassive black hole at the Galactic Centre.

9.
Science ; 290(5495): 1325-8, 2000 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-11082054

RESUMEN

High-resolution x-ray observations of the prototype starburst galaxy Messier 82 (M82) obtained with the advanced CCD (charge-coupled device) imaging spectrometer on board the Chandra X-ray Observatory provide a detailed view of hot plasma and energetic processes. Plasma with temperature of about 40,000,000 kelvin fills the inner 1 kiloparsec, which is much hotter than the 1,000,000 to 2,000,000 kelvin interstellar medium component in the Milky Way Galaxy. Produced by many supernova explosions, this central region is overpressurized and drives M82's prominent galactic wind into the intergalactic medium. We also resolved about 20 compact x-ray sources, many of which could be high-mass x-ray binary star systems containing black holes.

10.
Science ; 268(5217): 1598-601, 1995 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-17754612

RESUMEN

Röntgensatellit (ROSAT) observations made shortly before and during the collision of comet Shoemaker-Levy 9 with Jupiter show enhanced x-ray emissions from the planet's northern high latitudes. These emissions, which occur at System III longitudes where intensity enhancements have previously been observed in Jupiter's ultraviolet aurora, appear to be associated with the comet fragment impacts in Jupiter's southern hemisphere and may represent brightenings of the jovian x-ray aurora caused either by the fragment impacts themselves or by the passage of the fragments and associated dust clouds through Jupiter's inner magnetosphere.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...