Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 946, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441583

RESUMEN

Macrophages and monocytes are important for clearance of Leishmania infections. However, immune evasion tactics employed by the parasite results in suppressed inflammatory responses, marked by deficient macrophage functions and increased accumulation of monocytes. This results in an ineffective ability to clear parasite loads. Allograft Inflammatory Factor-1 (AIF1) is expressed in myeloid cells and serves to promote immune responses. However, AIF1 involvement in monocyte and macrophage functions during parasitic infections has not been explored. This study now shows that Leishmania donovani inhibits AIF1 expression in macrophages to block pro-inflammatory responses. Mice challenged with the parasite had markedly reduced AIF1 expression in splenic macrophages. Follow-up studies using in vitro approaches confirmed that L. donovani infection in macrophages suppresses AIF1 expression, which correlated with reduction in pro-inflammatory cytokine production and increased parasite load. Ectopic overexpression of AIF1 in macrophages provided protection from infection, marked by robust pro-inflammatory cytokine production and efficient pathogen clearance. Further investigations found that inhibiting AIF1 expression in bone marrow cells or monocytes impaired differentiation into functional macrophages. Collectively, results show that AIF1 is a critical regulatory component governing monocyte and macrophage immune functions and that L. donovani infection can suppress the gene as an immune evasion tactic.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Inflamación/inmunología , Leishmania donovani/metabolismo , Proteínas de Microfilamentos/metabolismo , Animales , Apoptosis , Células de la Médula Ósea/citología , Proteínas de Unión al Calcio/fisiología , Diferenciación Celular , Femenino , Evasión Inmune/inmunología , Evasión Inmune/fisiología , Inflamación/metabolismo , Leishmania donovani/patogenicidad , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/fisiología , Monocitos/inmunología , Monocitos/metabolismo
2.
Sci Rep ; 10(1): 4362, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152396

RESUMEN

Therapeutic approaches to combat type 1 diabetes (T1D) include donor pancreas transplantation, exogenous insulin administration and immunosuppressive therapies. However, these clinical applications are limited due to insufficient tissue compatible donors, side effects of exogenous insulin administration and/or increased onset of opportunistic infections attributable to induced global immunosuppression. An alternative approach to alleviate disease states is to utilize insulin-producing pancreatic islets seeded in a bioscaffold for implantation into diabetic recipients. The present studies now report that a newly developed cationic polymer biomaterial serves as an efficient bioscaffold for delivery of donor syngeneic pancreatic islet cells to reverse hyperglycemia in murine streptozotocin induced- or non-obese diabetic mouse models of T1D. Intraperitoneal implantation of pancreatic islets seeded within the copolymer bioscaffold supports long-term cell viability, response to extracellular signaling cues and ability to produce soluble factors into the microenvironment. Elevated insulin levels were measured in recipient diabetic mice upon implantation of the islet-seeded biomaterial coupled with reduced blood glucose levels, collectively resulting in increased survival and stabilization of metabolic indices. Importantly, the implanted islet-seeded biomaterial assembled into a solid organoid substructure that reorganized the extracellular matrix compartment and recruited endothelial progenitors for neovascularization. This allowed survival of the graft long-term in vivo and access to the blood for monitoring glucose levels. These results highlight the novelty, simplicity and effectiveness of this biomaterial for tissue regeneration and in vivo restoration of organ functions.


Asunto(s)
Hiperglucemia/sangre , Insulina/biosíntesis , Islotes Pancreáticos/metabolismo , Organoides , Técnicas de Cultivo de Tejidos , Andamios del Tejido , Animales , Glucemia , Supervivencia Celular , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Supervivencia de Injerto , Hiperglucemia/terapia , Trasplante de Islotes Pancreáticos , Ratones
3.
Front Immunol ; 10: 173, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30800127

RESUMEN

The multistep differentiation process from hematopoietic stem cells through common myeloid progenitors into committed dendritic cell (DC) subsets remains to be fully addressed. These studies now show that Allograft Inflammatory Factor-1 (AIF1) is required for differentiation of classical DC type 1 (cDC1) subsets and monocyte-derived DC (Mo-DC). Phenotypic studies found that AIF1 expression increased in committed subsets differentiating from common myeloid progenitors (CMP). However, silencing AIF1 expression in hematopoietic stem progenitors restrained the capacity to differentiate into Mo-DC and cDC1 cell subsets under GM-CSF or Flt3-L stimuli conditions, respectively. This was further marked by restrained expression of IRF8, which is critical for development of Mo-DC and cDC1 subsets. As a result, absence of AIF1 restrained the cells at the Lin-CD117+FcγR-CD34+ CMP stage. Further biochemical studies revealed that abrogating AIF1 resulted in inhibition of the NFκB family member RelB expression and p38 MAPK phosphorylation during differentiation of Mo-DC. Lastly, protein binding studies identified that AIF1 interacts with protein kinase C (PKC) to influence downstream signaling pathways. Taken together, this is the first report showing a novel role of AIF1 as a calcium-responsive scaffold protein that supports IRF8 expression and interacts with PKC to drive NFκB-related RelB for successfully differentiating hematopoietic progenitor cells into cDC and Mo-DC subsets under Flt3-L and GM-CSF stimuli, respectively.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/fisiología , Células Dendríticas/citología , Células Madre Hematopoyéticas/fisiología , Factores Reguladores del Interferón/metabolismo , Proteínas de Microfilamentos/metabolismo , Monocitos/citología , Factor de Transcripción ReIB/metabolismo , Animales , Células de la Médula Ósea/citología , Proteínas de Unión al Calcio/genética , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Hematopoyesis/efectos de los fármacos , Masculino , Proteínas de la Membrana/farmacología , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Subunidad p50 de NF-kappa B/metabolismo , Proteína Quinasa C/metabolismo , ARN Interferente Pequeño/genética , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Sci Rep ; 2: 554, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22870383

RESUMEN

Cells interpret their mechanical environment using diverse signaling pathways that affect complex phenotypes. These pathways often interact with ubiquitous 2(nd)-messengers such as calcium. Understanding mechanically-induced calcium signaling is especially important in fibroblasts, cells that exist in three-dimensional fibrous matrices, sense their mechanical environment, and remodel tissue morphology. Here, we examined calcium signaling in fibroblasts using a minimal-profile, three-dimensional (MP3D) mechanical assay system, and compared responses to those elicited by conventional, two-dimensional magnetic tensile cytometry and substratum stretching. Using the MP3D system, we observed robust mechanically-induced calcium responses that could not be recreated using either two-dimensional technique. Furthermore, we used the MP3D system to identify a critical displacement threshold governing an all-or-nothing mechanically-induced calcium response. We believe these findings significantly increase our understanding of the critical role of calcium signaling in cells in three-dimensional environments with broad implications in development and disease.


Asunto(s)
Señalización del Calcio , Fibroblastos/metabolismo , Animales , Fibroblastos/ultraestructura , Ratones , Imagen Molecular , Células 3T3 NIH , Estimulación Física
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...