Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38293114

RESUMEN

Motivation: Clusters of hydrophobic residues are known to promote structured protein stability and drive protein aggregation. Recent work has shown that identifying contiguous hydrophobic residue clusters (termed "blobs") has proven useful in both intrinsically disordered protein (IDP) simulation and human genome studies. However, a graphical interface was unavailable. Results: Here, we present the blobulator: an interactive and intuitive web interface to detect intrinsic modularity in any protein sequence based on hydrophobicity. We demonstrate three use cases of the blobulator and show how identifying blobs with biologically relevant parameters provides useful information about a globular protein, two orthologous membrane proteins, and an IDP. Other potential applications are discussed, including: predicting protein segments with critical roles in tertiary interactions, providing a definition of local order and disorder with clear edges, and aiding in predicting protein features from sequence. Availability: The blobulator GUI can be found at www.blobulator.branniganlab.org, and the source code with pip installable command line tool can be found on GitHub at www.GitHub.com/BranniganLab/blobulator.

2.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260485

RESUMEN

As the primary Ca 2+ release channel in skeletal muscle sarcoplasmic reticulum (SR), mutations in the type 1 ryanodine receptor (RyR1) or its binding partners underlie a constellation of muscle disorders, including malignant hyperthermia (MH). In patients with MH mutations, exposure to triggering drugs such as the halogenated volatile anesthetics biases RyR1 to an open state, resulting in uncontrolled Ca 2+ release, sarcomere tension and heat production. Restoration of Ca 2+ into the SR also consumes ATP, generating a further untenable metabolic load. When anesthetizing patients with known MH mutations, the non-triggering intravenous general anesthetic propofol is commonly substituted for triggering anesthetics. Evidence of direct binding of anesthetic agents to RyR1 or its binding partners is scant, and the atomic-level interactions of propofol with RyR1 are entirely unknown. Here, we show that propofol decreases RyR1 opening in heavy SR vesicles and planar lipid bilayers, and that it inhibits activator-induced Ca 2+ release from SR in human skeletal muscle. In addition to confirming direct binding, photoaffinity labeling using m- azipropofol (AziP m ) revealed several putative propofol binding sites on RyR1. Prediction of binding affinity by molecular dynamics simulation suggests that propofol binds at least one of these sites at clinical concentrations. These findings invite the hypothesis that in addition to propofol not triggering MH, it may also be protective against MH by inhibiting induced Ca 2+ flux through RyR1.

3.
Nat Commun ; 15(1): 25, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167383

RESUMEN

Lipid nanodiscs have become a standard tool for studying membrane proteins, including using single particle cryo-electron microscopy (cryo-EM). We find that reconstituting the pentameric ligand-gated ion channel (pLGIC), Erwinia ligand-gated ion channel (ELIC), in different nanodiscs produces distinct structures by cryo-EM. The effect of the nanodisc on ELIC structure extends to the extracellular domain and agonist binding site. Additionally, molecular dynamic simulations indicate that nanodiscs of different size impact ELIC structure and that the nanodisc scaffold directly interacts with ELIC. These findings suggest that the nanodisc plays a crucial role in determining the structure of pLGICs, and that reconstitution of ion channels in larger nanodiscs may better approximate a lipid membrane environment.


Asunto(s)
Canales Iónicos Activados por Ligandos , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Sitios de Unión , Lípidos
4.
J Chem Theory Comput ; 19(21): 7437-7458, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37902715

RESUMEN

Membrane proteins have diverse functions within cells and are well-established drug targets. The advances in membrane protein structural biology have revealed drug and lipid binding sites on membrane proteins, while computational methods such as molecular simulations can resolve the thermodynamic basis of these interactions. Particularly, alchemical free energy calculations have shown promise in the calculation of reliable and reproducible binding free energies of protein-ligand and protein-lipid complexes in membrane-associated systems. In this review, we present an overview of representative alchemical free energy studies on G-protein-coupled receptors, ion channels, transporters as well as protein-lipid interactions, with emphasis on best practices and critical aspects of running these simulations. Additionally, we analyze challenges and successes when running alchemical free energy calculations on membrane-associated proteins. Finally, we highlight the value of alchemical free energy calculations calculations in drug discovery and their applicability in the pharmaceutical industry.


Asunto(s)
Proteínas de la Membrana , Simulación de Dinámica Molecular , Entropía , Termodinámica , Ligandos , Lípidos , Unión Proteica
5.
Nat Commun ; 13(1): 7017, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36385237

RESUMEN

Pentameric ligand-gated ion channels (pLGICs) mediate synaptic transmission and are sensitive to their lipid environment. The mechanism of phospholipid modulation of any pLGIC is not well understood. We demonstrate that the model pLGIC, ELIC (Erwinia ligand-gated ion channel), is positively modulated by the anionic phospholipid, phosphatidylglycerol, from the outer leaflet of the membrane. To explore the mechanism of phosphatidylglycerol modulation, we determine a structure of ELIC in an open-channel conformation. The structure shows a bound phospholipid in an outer leaflet site, and structural changes in the phospholipid binding site unique to the open-channel. In combination with streamlined alchemical free energy perturbation calculations and functional measurements in asymmetric liposomes, the data support a mechanism by which an anionic phospholipid stabilizes the activated, open-channel state of a pLGIC by specific, state-dependent binding to this site.


Asunto(s)
Canales Iónicos Activados por Ligandos , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/metabolismo , Fosfolípidos , Sitios de Unión , Fosfatidilgliceroles , Liposomas
6.
Proc Natl Acad Sci U S A ; 119(12): e2116267119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35294280

RESUMEN

Hydrophobic interactions have long been established as essential for stabilizing struc-tured proteins as well as drivers of aggregation, but the impact of hydrophobicity on thefunctional significance of sequence variants has rarely been considered in a genome-wide context. Here we test the role of hydrophobicity on functional impact across70,000 disease- and non­disease-associated single-nucleotide polymorphisms (SNPs),using enrichment of disease association as an indicator of functionality. We find thatfunctional impact is uncorrelated with hydrophobicity of the SNP itself and only weaklycorrelated with the average local hydrophobicity, but is strongly correlated with boththe size and minimum hydrophobicity of the contiguously hydrophobic sequence (or"blob") that contains the SNP. Disease association is found to vary by more than sixfoldas a function of contiguous hydrophobicity parameters, suggesting utility as a prior foridentifying causal variation. We further find signatures of differential selective constrainton hydrophobic blobs and that SNPs splitting a long hydrophobic blob or joiningtwo short hydrophobic blobs are particularly likely to be disease associated. Trends arepreserved for both aggregating and nonaggregating proteins, indicating that the role ofcontiguous hydrophobicity extends well beyond aggregation risk.


Asunto(s)
Exoma , Genoma Humano , Aminoácidos/química , Exoma/genética , Genoma Humano/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas/química
7.
Elife ; 112022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982031

RESUMEN

Polyunsaturated fatty acids (PUFAs) inhibit pentameric ligand-gated ion channels (pLGICs) but the mechanism of inhibition is not well understood. The PUFA, docosahexaenoic acid (DHA), inhibits agonist responses of the pLGIC, ELIC, more effectively than palmitic acid, similar to the effects observed in the GABAA receptor and nicotinic acetylcholine receptor. Using photo-affinity labeling and coarse-grained molecular dynamics simulations, we identified two fatty acid binding sites in the outer transmembrane domain (TMD) of ELIC. Fatty acid binding to the photolabeled sites is selective for DHA over palmitic acid, and specific for an agonist-bound state. Hexadecyl-methanethiosulfonate modification of one of the two fatty acid binding sites in the outer TMD recapitulates the inhibitory effect of PUFAs in ELIC. The results demonstrate that DHA selectively binds to multiple sites in the outer TMD of ELIC, but that state-dependent binding to a single intrasubunit site mediates DHA inhibition of ELIC.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Canales Iónicos Activados por Ligandos/metabolismo , Sitios de Unión , Simulación de Dinámica Molecular , Dominios Proteicos
8.
J Chem Phys ; 154(18): 185102, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34241006

RESUMEN

The nicotinic acetylcholine receptor (nAChR) and other pentameric ligand-gated ion channels are native to neuronal membranes with an unusual lipid composition. While it is well-established that these receptors can be significantly modulated by lipids, the underlying mechanisms have been primarily studied in model membranes with few lipid species. Here, we use coarse-grained molecular dynamics simulation to probe specific binding of lipids in a complex quasi-neuronal membrane. We ran a total of 50 µs of simulations of a single nAChR in a membrane composed of 36 species of lipids. Competition between multiple lipid species produces a complex distribution. We find that overall, cholesterol selects for concave inter-subunit sites and polyunsaturated fatty acids select for convex M4 sites, while monounsaturated and saturated lipids are unenriched in the nAChR boundary. We propose the "density-threshold affinity" as a metric calculated from continuous density distributions, which reduces to a standard affinity in two-state binding. We find that the density-threshold affinity for M4 weakens with chain rigidity, which suggests that flexible chains may help relax packing defects caused by the conical protein shape. For any site, PE headgroups have the strongest affinity of all phospholipid headgroups, but anionic lipids still yield moderately high affinities for the M4 sites as expected. We observe cooperative effects between anionic headgroups and saturated chains at the M4 site in the inner leaflet. We also analyze affinities for individual anionic headgroups. When combined, these insights may reconcile several apparently contradictory experiments on the role of anionic phospholipids in modulating nAChR.


Asunto(s)
Membrana Celular/química , Lípidos/química , Simulación de Dinámica Molecular , Receptores Nicotínicos/química , Sitios de Unión , Membrana Celular/metabolismo , Receptores Nicotínicos/metabolismo
9.
ACS Chem Neurosci ; 12(9): 1487-1497, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33905229

RESUMEN

Ketamine is an anesthetic, analgesic, and antidepressant whose secondary metabolite (2R,6R)-hydroxynorketamine (HNK) has N-methyl-d-aspartate-receptor-independent antidepressant activity in a rodent model. In humans, naltrexone attenuates its antidepressant effect, consistent with opioid pathway involvement. No detailed biophysical description is available of opioid receptor binding of ketamine or its metabolites. Using molecular dynamics simulations with free energy perturbation, we characterize the binding site and affinities of ketamine and metabolites in µ and κ opioid receptors, finding a profound effect of the protonation state. G-protein recruitment assays show that HNK is an inverse agonist, attenuated by naltrexone, in these receptors with IC50 values congruous with our simulations. Overall, our findings are consistent with opioid pathway involvement in ketamine function.


Asunto(s)
Ketamina , Antidepresivos/farmacología , Depresión , Ketamina/análogos & derivados , Ketamina/farmacología , Receptores Opioides kappa
10.
Structure ; 28(2): 206-214.e4, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31862297

RESUMEN

The voltage-dependent anion channel (VDAC) forms the primary diffusion pore of the outer mitochondrial membrane. In its apo form, VDAC adopts an open conformation with high conductance. States of lower conductance can be induced by ligand binding or the application of voltage. Here, we clarify at the atomic level how ß-NADH binding leads to a low-conductance state and characterize the role of the VDAC N-terminal helix in voltage gating. A high-resolution NMR structure of human VDAC-1 with bound NADH, combined with molecular dynamics simulation show that ß-NADH binding reduces the pore conductance sterically without triggering a structural change. Electrophysiology recordings of crosslinked protein variants and NMR relaxation experiments probing different time scales show that increased helix dynamics is present in the open state and that motions of the N-terminal helices are involved in the VDAC voltage gating mechanism.


Asunto(s)
NAD/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Estructura Secundaria de Proteína
11.
Elife ; 82019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31724949

RESUMEN

Pentameric ligand-gated ion channels (pLGICs) are essential determinants of synaptic transmission, and are modulated by specific lipids including anionic phospholipids. The exact modulatory effect of anionic phospholipids in pLGICs and the mechanism of this effect are not well understood. Using native mass spectrometry, coarse-grained molecular dynamics simulations and functional assays, we show that the anionic phospholipid, 1-palmitoyl-2-oleoyl phosphatidylglycerol (POPG), preferentially binds to and stabilizes the pLGIC, Erwinia ligand-gated ion channel (ELIC), and decreases ELIC desensitization. Mutations of five arginines located in the interfacial regions of the transmembrane domain (TMD) reduce POPG binding, and a subset of these mutations increase ELIC desensitization. In contrast, a mutation that decreases ELIC desensitization, increases POPG binding. The results support a mechanism by which POPG stabilizes the open state of ELIC relative to the desensitized state by direct binding at specific sites.


Asunto(s)
Canales Iónicos Activados por Ligandos/metabolismo , Fosfatidilgliceroles/metabolismo , Regulación Alostérica , Análisis Mutacional de ADN , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/genética , Espectrometría de Masas , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Transmisión Sináptica
12.
PLoS One ; 14(10): e0223272, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31584962

RESUMEN

The nicotinic acetylcholine receptor (nAChR) is an excitatory pentameric ligand-gated ion channel (pLGIC), homologous to the inhibitory γ-aminobutyric acid (GABA) type A receptor targeted by pharmaceuticals and endogenous sedatives. Activation of the GABAA receptor by the neurosteroid allopregnanolone can be inhibited competitively by thyroid hormone (L-3,3',5-triiodothyronine, or T3), but modulation of nAChR by T3 or neurosteroids has not been investigated. Here we show that allopregnanolone inhibits the nAChR from Torpedo californica at micromolar concentrations, as do T3 and the anionic neurosteroid pregnenolone sulfate (PS). We test for the role of protein and ligand charge in mediated receptor inhibition by varying pH in a narrow range around physiological pH. We find that both T3 and PS become less potent with increasing pH, with remarkably similar trends in IC50 when T3 is neutral at pH < 7.3. After deprotonation of T3 (but no additional deprotonation of PS) at pH 7.3, T3 loses potency more slowly with increasing pH than PS. We interpret this result as indicating the negative charge is not required for inhibition but does increase activity. Finally, we show that both T3 and PS affect nAChR channel desensitization, which may implicate a binding site homologous to one that was recently indicated for accelerated desensitization of the GABAA receptor by PS.


Asunto(s)
Antagonistas Nicotínicos/farmacología , Pregnenolona/farmacología , Receptores Nicotínicos/metabolismo , Torpedo/metabolismo , Triyodotironina/farmacología , Animales , Relación Dosis-Respuesta a Droga , Antagonistas de Receptores de GABA-A/química , Antagonistas de Receptores de GABA-A/farmacología , Concentración 50 Inhibidora , Cinética , Estructura Molecular , Antagonistas Nicotínicos/química , Oocitos/metabolismo , Pregnenolona/química , Receptores de GABA-A/metabolismo , Triyodotironina/química
13.
ACS Chem Neurosci ; 10(11): 4716-4728, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31638765

RESUMEN

Agonists at the α2 adrenergic receptor produce sedation, increase focus, provide analgesia, and induce centrally mediated hypotension and bradycardia, yet neither their dynamic interactions with adrenergic receptors nor their modulation of neuronal circuit activity is completely understood. Photoaffinity ligands of α2 adrenergic agonists have the potential both to capture discrete moments of ligand-receptor interactions and to prolong naturalistic drug effects in discrete regions of tissue in vivo. We present here the synthesis and characterization of a novel α2 adrenergic agonist photolabel based on the imidazole medetomidine called azi-medetomidine. Azi-medetomidine shares protein association characteristics with its parent compound in experimental model systems and by molecular dynamics simulation of interactions with the α2A adrenergic receptor. Azi-medetomidine acts as an agonist at α2A adrenergic receptors, and produces hypnosis in Xenopus laevis tadpoles. Azi-medetomidine competes with the α2 agonist clonidine at α2A adrenergic receptors, which is potentiated by photolabeling, and azi-medetomidine labels moieties on the α2A adrenergic receptor as determined by mass spectrometry in a manner consistent with a simulated model. This novel α2 adrenergic agonist photolabel can serve as a powerful tool for in vitro and in vivo investigations of adrenergic signaling.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/síntesis química , Agonistas de Receptores Adrenérgicos alfa 2/metabolismo , Medetomidina/síntesis química , Medetomidina/metabolismo , Etiquetas de Fotoafinidad/síntesis química , Etiquetas de Fotoafinidad/metabolismo , Secuencia de Aminoácidos , Animales , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Estructura Secundaria de Proteína , Receptores Adrenérgicos alfa 2/metabolismo , Xenopus laevis
14.
Nat Chem Biol ; 15(12): 1156-1164, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31591563

RESUMEN

Phospholipids are key components of cellular membranes and are emerging as important functional regulators of different membrane proteins, including pentameric ligand-gated ion channels (pLGICs). Here, we take advantage of the prokaryote channel ELIC (Erwinia ligand-gated ion channel) as a model to understand the determinants of phospholipid interactions in this family of receptors. A high-resolution structure of ELIC in a lipid-bound state reveals a phospholipid site at the lower half of pore-forming transmembrane helices M1 and M4 and at a nearby site for neurosteroids, cholesterol or general anesthetics. This site is shaped by an M4-helix kink and a Trp-Arg-Pro triad that is highly conserved in eukaryote GABAA/C and glycine receptors. A combined approach reveals that M4 is intrinsically flexible and that M4 deletions or disruptions of the lipid-binding site accelerate desensitization in ELIC, suggesting that lipid interactions shape the agonist response. Our data offer a structural context for understanding lipid modulation in pLGICs.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos/metabolismo , Lípidos/química , Animales , Ligandos , Mutagénesis , Xenopus
15.
PLoS Comput Biol ; 15(10): e1007390, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31626641

RESUMEN

The role of electrostatic interactions and mutations that change charge states in intrinsically disordered proteins (IDPs) is well-established, but many disease-associated mutations in IDPs are charge-neutral. The Val66Met single nucleotide polymorphism (SNP) in precursor brain-derived neurotrophic factor (BDNF) is one of the earliest SNPs to be associated with neuropsychiatric disorders, and the underlying molecular mechanism is unknown. Here we report on over 250 µs of fully-atomistic, explicit solvent, temperature replica-exchange molecular dynamics (MD) simulations of the 91 residue BDNF prodomain, for both the V66 and M66 sequence. The simulations were able to correctly reproduce the location of both local and non-local secondary structure changes due to the Val66Met mutation, when compared with NMR spectroscopy. We find that the change in local structure is mediated via entropic and sequence specific effects. We developed a hierarchical sequence-based framework for analysis and conceptualization, which first identifies "blobs" of 4-15 residues representing local globular regions or linkers. We use this framework within a novel test for enrichment of higher-order (tertiary) structure in disordered proteins; the size and shape of each blob is extracted from MD simulation of the real protein (RP), and used to parameterize a self-avoiding heterogenous polymer (SAHP). The SAHP version of the BDNF prodomain suggested a protein segmented into three regions, with a central long, highly disordered polyampholyte linker separating two globular regions. This effective segmentation was also observed in full simulations of the RP, but the Val66Met substitution significantly increased interactions across the linker, as well as the number of participating residues. The Val66Met substitution replaces ß-bridging between V66 and V94 (on either side of the linker) with specific side-chain interactions between M66 and M95. The protein backbone in the vicinity of M95 is then free to form ß-bridges with residues 31-41 near the N-terminus, which condenses the protein. A significant role for Met/Met interactions is consistent with previously-observed non-local effects of the Val66Met SNP, as well as established interactions between the Met66 sequence and a Met-rich receptor that initiates neuronal growth cone retraction.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Proteínas Intrínsecamente Desordenadas/genética , Estructura Terciaria de Proteína/genética , Alelos , Factor Neurotrófico Derivado del Encéfalo/fisiología , Frecuencia de los Genes/genética , Genotipo , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Metionina , Simulación de Dinámica Molecular/estadística & datos numéricos , Polimorfismo de Nucleótido Simple/genética , Precursores de Proteínas , Estructura Terciaria de Proteína/fisiología , Especificidad por Sustrato/genética , Valina
16.
J Membr Biol ; 252(4-5): 385-396, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31321460

RESUMEN

At the neuromuscular junction (NMJ), the nicotinic acetylcholine receptor (nAChR) self-associates to give rise to rapid muscle movement. While lipid domains have maintained nAChR aggregates in vitro, their specific roles in nAChR clustering are currently unknown. In the present study, we carried out coarse-grained molecular dynamics simulations (CG-MD) of 1-4 nAChR molecules in two membrane environments: one mixture containing domain-forming, homoacidic lipids, and a second mixture consisting of heteroacidic lipids. Spontaneous dimerization of nAChRs was up to ten times more likely in domain-forming membranes; however, the effect was not significant in four-protein systems, suggesting that lipid domains are less critical to nAChR oligomerization when protein concentration is higher. With regard to lipid preferences, nAChRs consistently partitioned into liquid-disordered domains occupied by the omega-3 ([Formula: see text]-3) fatty acid, docosahexaenoic acid (DHA); enrichment of DHA boundary lipids increased with protein concentration, particularly in homoacidic membranes. This result suggests dimer formation blocks access of saturated chains and cholesterol, but not polyunsaturated chains, to boundary lipid sites.


Asunto(s)
Ácidos Docosahexaenoicos/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Multimerización de Proteína , Receptores Nicotínicos/química , Humanos
17.
Biochim Biophys Acta Biomembr ; 1861(4): 887-896, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30664881

RESUMEN

Reconstituted nicotinic acetylcholine receptors (nAChRs) exhibit significant gain-of-function upon addition of cholesterol to reconstitution mixtures, and cholesterol affects the organization of nAChRs within domain-forming membranes, but whether nAChR partitions to cholesterol-rich liquid-ordered ("raft" or lo) domains or cholesterol-poor liquid-disordered (ldo) domains is unknown. We use coarse-grained molecular dynamics simulations to observe spontaneous interactions of cholesterol, saturated lipids, and polyunsaturated (PUFA) lipids with nAChRs. In binary Dipalmitoylphosphatidylcholine:Cholesterol (DPPC:CHOL) mixtures, both CHOL and DPPC acyl chains were observed spontaneously entering deep "non-annular" cavities in the nAChR TMD, particularly at the subunit interface and the ß subunit center, facilitated by the low amino acid density in the cryo-EM structure of nAChR in a native membrane. Cholesterol was highly enriched in the annulus around the TMD, but this effect extended over (at most) 5-10 Å. In domain-forming ternary mixtures containing PUFAs, the presence of a single receptor did not significantly affect the likelihood of domain formation. nAChR partitioned to any cholesterol-poor ldo domain that was present, regardless of whether the ldo or lo domain lipids had PC or PE headgroups. Enrichment of PUFAs among boundary lipids was positively correlated with their propensity for demixing from cholesterol-rich phases. Long n-3 chains (tested here with Docosahexaenoic Acid, DHA) were highly enriched in annular and non-annular embedded sites, partially displacing cholesterol and completely displacing DPPC, and occupying sites even deeper within the bundle. Shorter n-6 chains were far less effective at displacing cholesterol from non-annular sites.


Asunto(s)
Proteínas de Peces/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Receptores Nicotínicos/química , Torpedo , 1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , 1,2-Dipalmitoilfosfatidilcolina/química , Animales , Colesterol/química , Ácidos Docosahexaenoicos/química
18.
J Chem Theory Comput ; 14(12): 6560-6573, 2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30358394

RESUMEN

The theory of receptor-ligand binding equilibria has long been well-established in biochemistry, and was primarily constructed to describe dilute aqueous solutions. Accordingly, few computational approaches have been developed for making quantitative predictions of binding probabilities in environments other than dilute isotropic solution. Existing techniques, ranging from simple automated docking procedures to sophisticated thermodynamics-based methods, have been developed with soluble proteins in mind. Biologically and pharmacologically relevant protein-ligand interactions often occur in complex environments, including lamellar phases like membranes and crowded, nondilute solutions. Here, we revisit the theoretical bases of ligand binding equilibria, avoiding overly specific assumptions that are nearly always made when describing receptor-ligand binding. Building on this formalism, we extend the asymptotically exact Alchemical Free Energy Perturbation technique to quantifying occupancies of sites on proteins in a complex bulk, including phase-separated, anisotropic, or nondilute solutions, using a thermodynamically consistent and easily generalized approach that resolves several ambiguities of current frameworks. To incorporate the complex bulk without overcomplicating the overall thermodynamic cycle, we simplify the common approach for ligand restraints by using a single distance-from-bound-configuration (DBC) ligand restraint during AFEP decoupling from protein. DBC restraints should be generalizable to binding modes of most small molecules, even those with strong orientational dependence. We apply this approach to compute the likelihood that membrane cholesterol binds to known crystallographic sites on three GPCRs (ß2-adrenergic, 5HT-2B, and µ-opioid) at a range of concentrations. Nonideality of cholesterol in a binary cholesterol:phosphatidylcholine (POPC) bilayer is characterized and consistently incorporated into the interpretation. We find that the three sites exhibit very different affinities for cholesterol: The site on the adrenergic receptor is predicted to be high affinity, with 50% occupancy for 1:109 CHOL:POPC mixtures. The sites on the 5HT-2B and µ-opioid receptor are predicted to be lower affinity, with 50% occupancy for 1:103 CHOL:POPC and 1:102 CHOL:POPC, respectively. These results could not have been predicted from the crystal structures alone.


Asunto(s)
Colesterol/metabolismo , Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G/metabolismo , Ligandos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Unión Proteica , Conformación Proteica , Receptores Acoplados a Proteínas G/química
19.
Methods Enzymol ; 602: 3-24, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29588036

RESUMEN

Efforts to detect binding modes of general anesthetics (GAs) for pentameric ligand-gated ion channels (pLGICs) are often complicated by a large number of indicated sites, as well as the challenges of ranking sites by affinity and determining which sites are occupied at clinical concentrations. Physics-based computational methods offer a powerful route for determining affinities of ligands to isolated binding sites, but preserving accuracy is essential. This chapter describes a step-by-step approach to multiple methods for identifying candidate sites and quantifying binding affinities and also discusses limitations and common pitfalls.


Asunto(s)
Anestésicos Generales/farmacología , Simulación de Dinámica Molecular , Receptores de GABA-A/metabolismo , Anestésicos Generales/química , Sitios de Unión , Humanos , Fosfatidilcolinas/química , Propofol/química , Propofol/farmacología , Receptores de GABA-A/química , Sevoflurano/química , Sevoflurano/farmacología , Programas Informáticos
20.
Curr Top Membr ; 80: 163-186, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28863815

RESUMEN

Several essential ionotropic neurotransmitter receptors, including the nicotinic acetylcholine receptor (nAChR) and gamma-aminobutyric acid (GABA) type A receptor (GABAAr), belong to the family of pentameric ligand-gated ion channels (pLGICs). Function of these receptors is particularly sensitive to their lipid environment, including cholesterol and cholesterol-derived neurosteroids. Direct structural data investigating interactions between sterols and pLGICs, as well as their role in modulatory mechanisms, are largely unavailable. Physics-based computational approaches can serve a vital role in interpretation of more indirect data as well as hypothesis generation and experimental design. In this chapter, I report several examples in which computational approaches were used to predict direct binding interactions of steroids and pLGICs, evaluate the relative likelihood of possible interpretations of experimental data, and present rationally designed simple experiments. I conclude by offering several predictions that could be tested by future experiments.


Asunto(s)
Colesterol/metabolismo , Biología Computacional/métodos , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/metabolismo , Multimerización de Proteína , Animales , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA