Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(12): 14210-14216, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559911

RESUMEN

In the background of the strong oil wettability and low production by water flooding in carbonate reservoirs, low-salinity water containing sulfate ions can significantly change the surface wettability of carbonate rocks and thus increase the sweeping area; however, the absorption and desorption mechanisms of the oil film in the carbonate rock surface remain unclear. This paper analyzed the wettability alternation of carbonate rocks' surface in pure water and sodium sulfate solution. At the same time, MD (Materials Studio) software was used to simulate the formation process of the oil film and the effect of sulfate ions on the desorption of the oil film on the surface of carbonate rocks. The experimental results showed that sodium sulfate solution could accelerate the rate from oil-wet to water-wet and the final contact angle (49°) was smaller than that in pure water. The simulation results showed that dodecane molecules moved to the surface of calcite to form a double layer of the oil film and that the oil film near the calcite surface had a high-density stable structure under the van der Waals and electrostatic action. The hydrating sulfate ions above the oil film broke through the double oil film to form a water channel mainly under the action of electrostatic force and a hydrogen bond and then adsorbed on the calcite surface. A large number of water molecules moved down the water channel based on a strong hydrogen bonding force and crowded out the oil molecules on the surface of the calcite, resulting in the oil film detachment. This work aims to explain the interaction of oil molecules, water molecules, and SO42- ions at the molecular scale and guide the practical application of low-salinity water flooding in carbonate reservoirs.

2.
Environ Sci Pollut Res Int ; 29(33): 50147-50165, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35226274

RESUMEN

This paper for the first time synthesizes novel biodiesel experimentally using low-cost feedstocks of coconut oil, caustic soda, and fermented palm wine contaminated by microorganisms. The alkaline catalyzed transesterification method was used for biodiesel production with minimal glycerol. The produced biodiesel was biodegradable and effective in cleaning a shoreline oil spill experiment verified by our developed oil spill radial numerical simulator. For the first time, an adaptive neuro-fuzzy inference system (ANFIS) was hybridized with invasive weed optimization (IWO), imperialist competitive algorithm (ICA), and shuffled complex evolution (SCE-UA) to predict biodiesel yield (BY) using obtained Monte Carlo simulation datasets from the biodiesel experimental seed data. The test results indicated ANFIS-IWO (MSE = 0.0628) as the best model and also when compared to the benchmarked ANFIS genetic algorithm (MSE = 0.0639). Additionally, ANFIS-IWO (RMSE = 0.54705) was tested on another coconut biodiesel data in the literature and it outperformed both response surface methodology (RMSE = 0.72739) and artificial neural network (RMSE = 0.68615) models used. The hybridized models proved to be robust for biodiesel yield modeling in addition to the produced biodiesel serving as an environmentally acceptable and cost-effective alternative for shoreline bioremediation.


Asunto(s)
Contaminación por Petróleo , Vino , Biocombustibles , Aceite de Coco , Lógica Difusa
3.
Sci Rep ; 10(1): 14363, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873868

RESUMEN

Limited to the Atlantic and its surrounding basins, the expression of the Coniacian-Santonian oceanic anoxic event (OAE3) was discovered in the non-marine Cretaceous Songliao Basin, Eastern Asia not long ago. In this study, based on spectral gamma ray logs data recorded in three basins, the self-similarity of the OAE3 was studied through the analysis of the scaling properties of thorium-potassium and thorium-uranium distributions both in marine and terrestrial environments using the multifractal detrending fluctuation analysis. The results indicate that, in both marine and terrestrial systems, the OAE3 intervals are characterized by their multifractal nature due to long-range correlation. However, the multifractal features of the studied OAE3 intervals are different in the three basins, although some common trends were observed. By comparing the degree of multifractality of the OAE3 deposits with the clay minerals and the redox conditions, it appears that the changes of the multifractal features are controlled by local changes such as clay mineralogy and redox conditions in both milieus under different sedimentation patterns. At all sites, the left side shortened spectrum of the thorium-potassium distribution suggests the presence of local fluctuations with minor amplitudes during the OAE3. Furthermore, the shortened singularity spectrum of the thorium-uranium distribution reflects the existence of small-scale fluctuations with large amplitudes at marine sites while in the non-marine Songliao Basin, the thorium-uranium distribution suggests the presence of local fluctuations with small amplitudes during the OAE3. Therefore, a more local behavior of the event is considered although the regional character is not neglected.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...