Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37292763

RESUMEN

Rationale: Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder caused by sarcomeric gene variants and associated with left ventricular (LV) hypertrophy and diastolic dysfunction. The role of the microtubule network has recently gained interest with the findings that -α-tubulin detyrosination (dTyr-tub) is markedly elevated in heart failure. Acute reduction of dTyr-tub by inhibition of the detyrosinase (VASH/SVBP complex) or activation of the tyrosinase (tubulin tyrosine ligase, TTL) markedly improved contractility and reduced stiffness in human failing cardiomyocytes, and thus poses a new perspective for HCM treatment. Objective: In this study, we tested the impact of chronic tubulin tyrosination in a HCM mouse model ( Mybpc3 -knock-in; KI), in human HCM cardiomyocytes and in SVBP-deficient human engineered heart tissues (EHTs). Methods and Results: AAV9-mediated TTL transfer was applied in neonatal wild-type (WT) rodents and 3-week-old KI mice and in HCM human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. We show that i) TTL for 6 weeks dose-dependently reduced dTyr-tub and improved contractility without affecting cytosolic calcium transients in WT cardiomyocytes; ii) TTL for 12 weeks improved diastolic filling, cardiac output and stroke volume and reduced stiffness in KI mice; iii) TTL for 10 days normalized cell hypertrophy in HCM hiPSC-cardiomyocytes; iv) TTL induced a marked transcription and translation of several tubulins and modulated mRNA or protein levels of components of mitochondria, Z-disc, ribosome, intercalated disc, lysosome and cytoskeleton in KI mice; v) SVBP-deficient EHTs exhibited reduced dTyr-tub levels, higher force and faster relaxation than TTL-deficient and WT EHTs. RNA-seq and mass spectrometry analysis revealed distinct enrichment of cardiomyocyte components and pathways in SVBP-KO vs. TTL-KO EHTs. Conclusion: This study provides the first proof-of-concept that chronic activation of tubulin tyrosination in HCM mice and in human EHTs improves heart function and holds promise for targeting the non-sarcomeric cytoskeleton in heart disease.

2.
Elife ; 112022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36300918

RESUMEN

Regulation of systemic PCO2 is a life-preserving homeostatic mechanism. In the medulla oblongata, the retrotrapezoid nucleus (RTN) and rostral medullary Raphe are proposed as CO2 chemosensory nuclei mediating adaptive respiratory changes. Hypercapnia also induces active expiration, an adaptive change thought to be controlled by the lateral parafacial region (pFL). Here, we use GCaMP6 expression and head-mounted mini-microscopes to image Ca2+ activity in these nuclei in awake adult mice during hypercapnia. Activity in the pFL supports its role as a homogenous neuronal population that drives active expiration. Our data show that chemosensory responses in the RTN and Raphe differ in their temporal characteristics and sensitivity to CO2, raising the possibility these nuclei act in a coordinated way to generate adaptive ventilatory responses to hypercapnia. Our analysis revises the understanding of chemosensory control in awake adult mouse and paves the way to understanding how breathing is coordinated with complex non-ventilatory behaviours.


Asunto(s)
Dióxido de Carbono , Hipercapnia , Ratones , Animales , Hipercapnia/metabolismo , Dióxido de Carbono/metabolismo , Bulbo Raquídeo/fisiología , Tronco Encefálico/fisiología , Respiración
3.
Cells ; 11(17)2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36078153

RESUMEN

Genetic variants in α-actinin-2 (ACTN2) are associated with several forms of (cardio)myopathy. We previously reported a heterozygous missense (c.740C>T) ACTN2 gene variant, associated with hypertrophic cardiomyopathy, and characterized by an electro-mechanical phenotype in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Here, we created with CRISPR/Cas9 genetic tools two heterozygous functional knock-out hiPSC lines with a second wild-type (ACTN2wt) and missense ACTN2 (ACTN2mut) allele, respectively. We evaluated their impact on cardiomyocyte structure and function, using a combination of different technologies, including immunofluorescence and live cell imaging, RNA-seq, and mass spectrometry. This study showed that ACTN2mut presents a higher percentage of multinucleation, protein aggregation, hypertrophy, myofibrillar disarray, and activation of both the ubiquitin-proteasome system and the autophagy-lysosomal pathway as compared to ACTN2wt in 2D-cultured hiPSC-CMs. Furthermore, the expression of ACTN2mut was associated with a marked reduction of sarcomere-associated protein levels in 2D-cultured hiPSC-CMs and force impairment in engineered heart tissues. In conclusion, our study highlights the activation of proteolytic systems in ACTN2mut hiPSC-CMs likely to cope with ACTN2 aggregation and therefore directs towards proteopathy as an additional cellular pathology caused by this ACTN2 variant, which may contribute to human ACTN2-associated cardiomyopathies.


Asunto(s)
Actinina , Cardiomiopatía Hipertrófica , Agregación Patológica de Proteínas , Actinina/genética , Actinina/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Sarcómeros/metabolismo
4.
Front Aging Neurosci ; 14: 861344, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847678

RESUMEN

Sleep apnoea is a highly prevalent disease that often goes undetected and is associated with poor clinical prognosis, especially as it exacerbates many different disease states. However, most animal models of sleep apnoea (e.g., intermittent hypoxia) have recently been dispelled as physiologically unrealistic and are often unduly severe. Owing to a lack of appropriate models, little is known about the causative link between sleep apnoea and its comorbidities. To overcome these problems, we have created a more realistic animal model of moderate sleep apnoea by reducing the excitability of the respiratory network. This has been achieved through controlled genetically mediated lesions of the preBötzinger complex (preBötC), the inspiratory oscillator. This novel model shows increases in sleep disordered breathing with alterations in breathing during wakefulness (decreased frequency and increased tidal volume) as observed clinically. The increase in dyspnoeic episodes leads to reduction in REM sleep, with all lost active sleep being spent in the awake state. The increase in hypoxic and hypercapnic insults induces both systemic and neural inflammation. Alterations in neurophysiology, an inhibition of hippocampal long-term potentiation (LTP), is reflected in deficits in both long- and short-term spatial memory. This improved model of moderate sleep apnoea may be the key to understanding why this disorder has such far-reaching and often fatal effects on end-organ function.

5.
Methods Mol Biol ; 2510: 129-144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35776323

RESUMEN

Adeno-associated viruses (AAV) are useful vectors for transducing cells in vitro and in vivo. Targeting of specific cell subsets with AAV is limited by the broad tropism of AAV serotypes. Nanobodies are single immunoglobulin variable domains from heavy chain antibodies that naturally occur in camelids. Their small size and high solubility allow easy reformatting into fusion proteins. In this chapter we provide protocols for inserting a P2X7-specific nanobody into a surface loop of the VP1 capsid protein of AAV2. Such nanobody-displaying recombinant AAV allow 50- to 500-fold stronger transduction of P2X7-expressing cells than the parental AAV. We provide protocols for monitoring the transduction of P2X7-expressing cells by nanobody-displaying rAAV by flow cytometry and fluorescence microscopy.


Asunto(s)
Dependovirus , Vectores Genéticos , Proteínas de la Cápside/genética , Dependovirus/genética , Vectores Genéticos/genética , Transducción Genética , Tropismo
6.
Neurobiol Dis ; 164: 105628, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35033660

RESUMEN

Loss of vision due to progressive retinal degeneration is a hallmark of neuronal ceroid lipofuscinoses (NCL), a group of fatal neurodegenerative lysosomal storage diseases. Enzyme substitution therapies represent promising treatment options for NCLs caused by dysfunctions of soluble lysosomal enzymes. Here, we compared the efficacy of a cell-based enzyme substitution strategy and a gene therapy approach to attenuate the retinal pathology in cathepsin D- (CTSD) deficient mice, an animal model of CLN10 disease. Levels of enzymatically active CTSD in mutant retinas were significantly higher after an adeno-associated virus vector-mediated CTSD transfer to retinal glial cells and retinal pigment epithelial cells than after intravitreal transplantations of a CTSD overexpressing clonal neural stem cell line. In line with this finding, the gene therapy treatment restored the disrupted autophagy-lysosomal pathway more effectively than the cell-based approach, as indicated by a complete clearance of storage, significant attenuation of lysosomal hypertrophy, and normalized levels of the autophagy marker sequestosome 1/p62 and microtubule-associated protein 1 light chain 3-II. While the cell-based treatment did not prevent the rapidly progressing loss of various retinal cell types, the gene therapy approach markedly attenuated retinal degeneration as demonstrated by a pronounced rescue of photoreceptor cells and rod bipolar cells.


Asunto(s)
Autofagia/fisiología , Catepsina D/genética , Terapia Genética , Lisosomas/fisiología , Degeneración Retiniana/terapia , Animales , Catepsina D/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Degeneración Retiniana/genética
7.
EMBO Mol Med ; 13(6): e13074, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33998164

RESUMEN

The phospholamban (PLN) p.Arg14del mutation causes dilated cardiomyopathy, with the molecular disease mechanisms incompletely understood. Patient dermal fibroblasts were reprogrammed to hiPSC, isogenic controls were established by CRISPR/Cas9, and cardiomyocytes were differentiated. Mutant cardiomyocytes revealed significantly prolonged Ca2+ transient decay time, Ca2+ -load dependent irregular beating pattern, and lower force. Proteomic analysis revealed less endoplasmic reticulum (ER) and ribosomal and mitochondrial proteins. Electron microscopy showed dilation of the ER and large lipid droplets in close association with mitochondria. Follow-up experiments confirmed impairment of the ER/mitochondria compartment. PLN p.Arg14del end-stage heart failure samples revealed perinuclear aggregates positive for ER marker proteins and oxidative stress in comparison with ischemic heart failure and non-failing donor heart samples. Transduction of PLN p.Arg14del EHTs with the Ca2+ -binding proteins GCaMP6f or parvalbumin improved the disease phenotype. This study identified impairment of the ER/mitochondria compartment without SR dysfunction as a novel disease mechanism underlying PLN p.Arg14del cardiomyopathy. The pathology was improved by Ca2+ -scavenging, suggesting impaired local Ca2+ cycling as an important disease culprit.


Asunto(s)
Trasplante de Corazón , Miocitos Cardíacos , Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico , Humanos , Mitocondrias , Mutación , Miocitos Cardíacos/metabolismo , Proteómica , Donantes de Tejidos
8.
Cell Rep ; 34(2): 108624, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33440156

RESUMEN

Thermoneutral conditions typical for standard human living environments result in brown adipose tissue (BAT) involution, characterized by decreased mitochondrial mass and increased lipid deposition. Low BAT activity is associated with poor metabolic health, and BAT reactivation may confer therapeutic potential. However, the molecular drivers of this BAT adaptive process in response to thermoneutrality remain enigmatic. Using metabolic and lipidomic approaches, we show that endogenous fatty acid synthesis, regulated by carbohydrate-response element-binding protein (ChREBP), is the central regulator of BAT involution. By transcriptional control of lipogenesis-related enzymes, ChREBP determines the abundance and composition of both storage and membrane lipids known to regulate organelle turnover and function. Notably, ChREBP deficiency and pharmacological inhibition of lipogenesis during thermoneutral adaptation preserved mitochondrial mass and thermogenic capacity of BAT independently of mitochondrial biogenesis. In conclusion, we establish lipogenesis as a potential therapeutic target to prevent loss of BAT thermogenic capacity as seen in adult humans.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Ácidos Grasos/biosíntesis , Animales , Humanos , Ratones
9.
J Cardiovasc Pharmacol ; 77(3): 291-299, 2020 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-33278190

RESUMEN

ABSTRACT: Atrial tachypacing is an accepted model for atrial fibrillation (AF) in large animals and in cellular models. Human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CM) provide a novel human source to model cardiovascular diseases. Here, we investigated whether optogenetic tachypacing of atrial-like hiPSC-CMs grown into engineered heart tissue (aEHT) can induce AF-remodeling. After differentiation of atrial-like cardiomyocytes from hiPSCs using retinoic acid, aEHTs were generated from ∼1 million atrial-like hiPSC-CMs per aEHT. AEHTs were transduced with lentivirus expressing channelrhodopsin-2 to enable optogenetic stimulation by blue light pulses. AEHTs underwent optical tachypacing at 5 Hz for 15 seconds twice a minute over 3 weeks and compared with transduced spontaneously beating isogenic aEHTs (1.95 ± 0.07 Hz). Force and action potential duration did not differ between spontaneously beating and tachypaced aEHTs. Action potentials in tachypaced aEHTs showed higher upstroke velocity (138 ± 15 vs. 87 ± 11 V/s, n = 15-13/3; P = 0.018), possibly corresponding to a tendency for more negative diastolic potentials (73.0 ± 1.8 vs. 68.0 ± 1.9 mV; P = 0.07). Tachypaced aEHTs exhibited a more irregular spontaneous beating pattern (beat-to-beat scatter: 0.07 ± 0.01 vs. 0.03 ± 0.004 seconds, n = 15-13/3; P = 0.008). Targeted expression analysis showed higher RNA levels of KCNJ12 [Kir2.2, inward rectifier (IK1); 69 ± 7 vs. 44 ± 4, P = 0.014] and NPPB (NT-proBNP; 39,690 ± 4834 vs. 23,671 ± 3691; P = 0.024). Intermittent tachypacing in aEHTs induces some electrical alterations found in AF and induces an arrhythmic spontaneous beating pattern, but does not affect resting force. Further studies using longer, continuous, or more aggressive stimulation may clarify the contribution of different rate patterns on the changes in aEHT mimicking the remodeling process from paroxysmal to persistent atrial fibrillation.


Asunto(s)
Fibrilación Atrial/fisiopatología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/metabolismo , Optogenética/métodos , Potenciales de Acción , Remodelación Atrial/fisiología , Channelrhodopsins/genética , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Humanos , Lentivirus , Ingeniería de Tejidos/métodos
10.
Stem Cell Reports ; 14(2): 312-324, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31956082

RESUMEN

Force measurements in ex vivo and engineered heart tissues are well established. Analysis of calcium transients (CaT) is complementary to force, and the combined analysis is meaningful to the study of cardiomyocyte biology and disease. This article describes a model of human induced pluripotent stem cell cardiomyocyte-derived engineered heart tissues (hiPSC-CM EHTs) transduced with the calcium sensor GCaMP6f followed by sequential analysis of force and CaT. Average peak analysis demonstrated the temporal sequence of the CaT preceding the contraction twitch. The pharmacological relevance of the test system was demonstrated with inotropic indicator compounds. Force-frequency relationship was analyzed in the presence of ivabradine (300 nM), which reduced spontaneous frequency and unmasked a positive correlation of force and CaT at physiological human heart beating frequency with stimulation frequency between 0.75 and 2.5 Hz (force +96%; CaT +102%). This work demonstrates the usefulness of combined force/CaT analysis and demonstrates a positive force-frequency relationship in hiPSC-CM EHTs.


Asunto(s)
Señalización del Calcio , Corazón/fisiología , Ingeniería de Tejidos/métodos , Artefactos , Fenómenos Biomecánicos , Señalización del Calcio/efectos de los fármacos , Fluorescencia , Corazón/efectos de los fármacos , Humanos , Movimiento (Física) , Contracción Miocárdica/efectos de los fármacos , Urea/análogos & derivados , Urea/farmacología
11.
Cardiovasc Res ; 116(8): 1487-1499, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31598634

RESUMEN

AIMS: Chronic tachypacing is commonly used in animals to induce cardiac dysfunction and to study mechanisms of heart failure and arrhythmogenesis. Human induced pluripotent stem cells (hiPSC) may replace animal models to overcome species differences and ethical problems. Here, 3D engineered heart tissue (EHT) was used to investigate the effect of chronic tachypacing on hiPSC-cardiomyocytes (hiPSC-CMs). METHODS AND RESULTS: To avoid cell toxicity by electrical pacing, we developed an optogenetic approach. EHTs were transduced with lentivirus expressing channelrhodopsin-2 (H134R) and stimulated by 15 s bursts of blue light pulses (0.3 mW/mm2, 30 ms, 3 Hz) separated by 15 s without pacing for 3 weeks. Chronic optical tachypacing did not affect contractile peak force, but induced faster contraction kinetics, shorter action potentials, and shorter effective refractory periods. This electrical remodelling increased vulnerability to tachycardia episodes upon electrical burst pacing. Lower calsequestrin 2 protein levels, faster diastolic depolarization (DD) and efficacy of JTV-519 (46% at 1 µmol/L) to terminate tachycardia indicate alterations of Ca2+ handling being part of the underlying mechanism. However, other antiarrhythmic compounds like flecainide (69% at 1 µmol/L) and E-4031 (100% at 1 µmol/L) were also effective, but not ivabradine (1 µmol/L) or SEA0400 (10 µmol/L). CONCLUSION: We demonstrated a high vulnerability to tachycardia of optically tachypaced hiPSC-CMs in EHT and the effective termination by ryanodine receptor stabilization, sodium or hERG potassium channel inhibition. This new model might serve as a preclinical tool to test antiarrhythmic drugs increasing the insight in treating ventricular tachycardia.


Asunto(s)
Potenciales de Acción , Estimulación Cardíaca Artificial , Channelrhodopsins/metabolismo , Frecuencia Cardíaca , Corazón/fisiopatología , Células Madre Pluripotentes Inducidas/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Optogenética , Taquicardia Ventricular/fisiopatología , Potenciales de Acción/efectos de los fármacos , Antiarrítmicos/farmacología , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Channelrhodopsins/genética , Corazón/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Cinética , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Ingeniería de Tejidos
12.
Sci Rep ; 9(1): 18152, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796859

RESUMEN

Phosphorylation of cardiac myosin-binding protein C (cMyBP-C), encoded by MYBPC3, increases the availability of myosin heads for interaction with actin thus enhancing contraction. cMyBP-C phosphorylation level is lower in septal myectomies of patients with hypertrophic cardiomyopathy (HCM) than in non-failing hearts. Here we compared the effect of phosphomimetic (D282) and wild-type (S282) cMyBP-C gene transfer on the HCM phenotype of engineered heart tissues (EHTs) generated from a mouse model carrying a Mybpc3 mutation (KI). KI EHTs showed lower levels of mutant Mybpc3 mRNA and protein, and altered gene expression compared with wild-type (WT) EHTs. Furthermore, KI EHTs exhibited faster spontaneous contractions and higher maximal force and sensitivity to external [Ca2+] under pacing. Adeno-associated virus-mediated gene transfer of D282 and S282 similarly restored Mybpc3 mRNA and protein levels and suppressed mutant Mybpc3 transcripts. Moreover, both exogenous cMyBP-C proteins were properly incorporated in the sarcomere. KI EHTs hypercontractility was similarly prevented by both treatments, but S282 had a stronger effect than D282 to normalize the force-Ca2+-relationship and the expression of dysregulated genes. These findings in an in vitro model indicate that S282 is a better choice than D282 to restore the HCM EHT phenotype. To which extent the results apply to human HCM remains to be seen.


Asunto(s)
Cardiomiopatía Hipertrófica/metabolismo , Proteínas Portadoras/metabolismo , Miocardio/metabolismo , Animales , Calcio/metabolismo , Proteínas Portadoras/genética , Corazón , Ratones , Mutación/genética , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Fenotipo , ARN Mensajero/metabolismo , Sarcómeros/metabolismo , Ingeniería de Tejidos/métodos
13.
Mol Ther Methods Clin Dev ; 15: 211-220, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31687421

RESUMEN

A limiting factor for the use of adeno-associated viruses (AAVs) as vectors in gene therapy is the broad tropism of AAV serotypes, i.e., the parallel infection of several cell types. Nanobodies are single immunoglobulin variable domains from heavy chain antibodies that naturally occur in camelids. Their small size and high solubility allow easy reformatting into fusion proteins. Herein we show that a membrane protein-specific nanobody can be inserted into a surface loop of the VP1 capsid protein of AAV2. Using three structurally distinct membrane proteins-a multispan ion channel, a single-span transmembrane protein, and a glycosylphosphatidylinositol (GPI)-anchored ectoenzyme-we show that this strategy can dramatically enhance the transduction of specific target cells by recombinant AAV2. Moreover, we show that the nanobody-VP1 fusion of AAV2 can be incorporated into the capsids of AAV1, AAV8, and AAV9 and thereby effectively redirect the target specificity of other AAV serotypes. Nanobody-mediated targeting provides a highly efficient AAV targeting strategy that is likely to open up new avenues for genetic engineering of cells.

14.
J Biol Chem ; 294(24): 9592-9604, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31040178

RESUMEN

Numerous lysosomal enzymes and membrane proteins are essential for the degradation of proteins, lipids, oligosaccharides, and nucleic acids. The CLN3 gene encodes a lysosomal membrane protein of unknown function, and CLN3 mutations cause the fatal neurodegenerative lysosomal storage disorder CLN3 (Batten disease) by mechanisms that are poorly understood. To define components critical for lysosomal homeostasis that are affected by this disease, here we quantified the lysosomal proteome in cerebellar cell lines derived from a CLN3 knock-in mouse model of human Batten disease and control cells. We purified lysosomes from SILAC-labeled, and magnetite-loaded cerebellar cells by magnetic separation and analyzed them by MS. This analysis identified 70 proteins assigned to the lysosomal compartment and 3 lysosomal cargo receptors, of which most exhibited a significant differential abundance between control and CLN3-defective cells. Among these, 28 soluble lysosomal proteins catalyzing the degradation of various macromolecules had reduced levels in CLN3-defective cells. We confirmed these results by immunoblotting and selected protease and glycosidase activities. The reduction of 11 lipid-degrading lysosomal enzymes correlated with reduced capacity for lipid droplet degradation and several alterations in the distribution and composition of membrane lipids. In particular, levels of lactosylceramides and glycosphingolipids were decreased in CLN3-defective cells, which were also impaired in the recycling pathway of the exocytic transferrin receptor. Our findings suggest that CLN3 has a crucial role in regulating lysosome composition and their function, particularly in degrading of sphingolipids, and, as a consequence, in membrane transport along the recycling endosome pathway.


Asunto(s)
Cerebelo/metabolismo , Lípidos/análisis , Lisosomas/metabolismo , Glicoproteínas de Membrana/deficiencia , Transporte de Proteínas , Proteínas/metabolismo , Proteoma/análisis , Animales , Hidrolasas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Receptores de Transferrina/metabolismo
15.
Mol Genet Metab ; 126(2): 196-205, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30301600

RESUMEN

Mutations in the CLN7/MFSD8 gene encoding the lysosomal membrane protein CLN7 are causative of CLN7 disease, an inherited neurodegenerative disorder that typically affects children. To gain insight into the pathomechanisms of CLN7 disease, we established an immortalized cell line based on cerebellar (Cb) granule neuron precursors isolated from Cln7-/- mice. Here, we demonstrate that Cln7-deficient neuron-derived Cb cells display an abnormal phenotype that includes increased size and defective outward movement of late endosomes and lysosomes as well as impaired lysosomal exocytosis. Whereas Cln7-/- Cb cells appeared to be autophagy-competent, loss of Cln7 resulted in enhanced cell death under prolonged nutrient deprivation. Furthermore, reduced cell survival of Cln7-deficient cells was accompanied by a significantly impaired protein kinase B/Akt phosphorylation at Ser473 during long-term starvation. In summary, our data demonstrate for the first time that the putative lysosomal transporter CLN7 is relevant for lysosome motility and plays an important role for neuronal cell survival under conditions of starvation.


Asunto(s)
Lisosomas/metabolismo , Proteínas de Transporte de Membrana/genética , Mutación , Lipofuscinosis Ceroideas Neuronales/genética , Neuronas/patología , Animales , Autofagia , Transporte Biológico , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular , Exocitosis , Ratones , Ratones Noqueados , Naftiridinas/farmacología , Neuronas/citología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
16.
Redox Biol ; 21: 101077, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30593979

RESUMEN

Genes that are highly conserved in food seeking behaviour, such as protein kinase G (PKG), are of interest because of their potential role in the global obesity epidemic. PKG1α can be activated by binding of cyclic guanosine monophosphate (cGMP) or oxidant-induced interprotein disulfide bond formation between the two subunits of this homodimeric kinase. PKG1α activation by cGMP plays a role in reward and addiction through its actions in the ventral tegmental area (VTA) of the brain. 'Redox dead' C42S PKG1α knock-in (KI) mice, which are fully deficient in oxidant-induced disulfide-PKG1α formation, display increased food seeking and reward behaviour compared to wild-type (WT) littermates. Rewarding monoamines such as dopamine, which are released during feeding, are metabolised by monoamine oxidase to generate hydrogen peroxide that was shown to mediate PKG1α oxidation. Indeed, inhibition of monoamine oxidase, which prevents it producing hydrogen peroxide, attenuated PKG1α oxidation and increased sucrose preference in WT, but not KI mice. The deficient reward phenotype of the KI mice was rescued by expressing WT kinase that can form the disulfide state in the VTA using an adeno-associated virus, consistent with PKG1α oxidation providing a break on feeding behaviour. In conclusion, disulfide-PKG1α in VTA neurons acts as a negative regulator of feeding and therefore may provide a novel therapeutic target for obesity.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Conducta Alimentaria , Oxidación-Reducción , Recompensa , Animales , Conducta Animal , Disulfuros/metabolismo , Dopamina/metabolismo , Dopamina/farmacología , Activación Enzimática/efectos de los fármacos , Femenino , Levodopa/metabolismo , Levodopa/farmacología , Masculino , Ratones , Ratones Noqueados , Monoaminooxidasa/metabolismo , Óxido Nítrico/metabolismo , Procesamiento Proteico-Postraduccional , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
17.
J Cell Sci ; 131(9)2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29632241

RESUMEN

The cell adhesion molecule L1 (also known as L1CAM) plays important roles in the mammalian nervous system under physiological and pathological conditions. We have previously reported that proteolytic cleavage of L1 by myelin basic protein leads to the generation of a 70 kDa transmembrane L1 fragment (L1-70) that promotes neuronal migration and neuritogenesis. Here, we provide evidence that L1-70 is imported from the cytoplasm into mitochondria. Genetic ablation of L1, inhibition of mitochondrial import of L1-70 or prevention of myelin basic protein-mediated generation of L1-70 all lead to reduced mitochondrial complex I activity, and impaired mitochondrial membrane potential, fusion, fission and motility, as well as increased retrograde transport. We identified NADH dehydrogenase ubiquinone flavoprotein 2 as a binding partner for L1, suggesting that L1-70 interacts with this complex I subunit to regulate complex I activity. The results of our study provide insights into novel functions of L1 in mitochondrial metabolism and cellular dynamics. These functions are likely to ameliorate the consequences of acute nervous system injuries and chronic neurodegenerative diseases.


Asunto(s)
Mitocondrias/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Encéfalo/metabolismo , Citoplasma/metabolismo , Femenino , Masculino , Ratones , Transporte de Proteínas
18.
Mol Neurobiol ; 55(9): 7164-7178, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29383692

RESUMEN

Proteolytic cleavage of the neuronal isoform of the murine cell adhesion molecule L1, triggered by stimulation of the cognate L1-dependent signaling pathways, results in the generation and nuclear import of an L1 fragment that contains the intracellular domain, the transmembrane domain, and part of the extracellular domain. Here, we show that the LXXLL and FXXLF motifs in the extracellular and transmembrane domain of this L1 fragment mediate the interaction with the nuclear estrogen receptors α (ERα) and ß (ERß), peroxisome proliferator-activated receptor γ (PPARγ), and retinoid X receptor ß (RXRß). Mutations of the LXXLL motif in the transmembrane domain and of the FXXLF motif in the extracellular domain disturb the interaction of the L1 fragment with these nuclear receptors and, when introduced by viral transduction into mouse embryos in utero, result in impaired motor coordination, learning and memory, as well as synaptic connectivity in the cerebellum, in adulthood. These impairments are similar to those observed in the L1-deficient mouse. Our findings suggest that the interplay of nuclear L1 and distinct nuclear receptors is associated with synaptic contact formation and plasticity.


Asunto(s)
Actividad Motora , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Plasticidad Neuronal , Receptores Citoplasmáticos y Nucleares/metabolismo , Secuencias de Aminoácidos , Animales , Glutamatos/metabolismo , Masculino , Ratones , Mutación/genética , Molécula L1 de Adhesión de Célula Nerviosa/química , Unión Proteica , Células de Purkinje/metabolismo , Células de Purkinje/patología , Células de Purkinje/ultraestructura , Ácido gamma-Aminobutírico/metabolismo
19.
Cancer Res ; 77(5): 1188-1199, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28031227

RESUMEN

Head and neck squamous cell carcinomas (HNSCC) exhibiting resistance to the EGFR-targeting drug cetuximab poses a challenge to their effective clinical management. Here, we report a specific mechanism of resistance in this setting based upon the presence of a single nucleotide polymorphism encoding EGFR-K521 (K-allele), which is expressed in >40% of HNSCC cases. Patients expressing the K-allele showed significantly shorter progression-free survival upon palliative treatment with cetuximab plus chemotherapy or radiation. In several EGFR-mediated cancer models, cetuximab failed to inhibit downstream signaling or to kill cells harboring a high K-allele frequency. Cetuximab affinity for EGFR-K521 was reduced slightly, but ligand-mediated EGFR activation was intact. We found a lack of glycan sialyation on EGFR-K521 that associated with reduced protein stability, suggesting a structural basis for reduced cetuximab efficacy. CetuGEX, an antibody with optimized Fc glycosylation targeting the same epitope as cetuximab, restored HNSCC sensitivity in a manner associated with antibody-dependent cellular cytotoxicity rather than EGFR pathway inhibition. Overall, our results highlight EGFR-K521 expression as a key mechanism of cetuximab resistance to evaluate prospectively as a predictive biomarker in HNSCC patients. Further, they offer a preclinical rationale for the use of ADCC-optimized antibodies to treat tumors harboring this EGFR isoform. Cancer Res; 77(5); 1188-99. ©2016 AACR.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Cetuximab/farmacología , Receptores ErbB/genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Neoplasias de Cabeza y Cuello/enzimología , Neoplasias de Cabeza y Cuello/genética , Humanos , Ratones , Ratones Endogámicos NOD , Polimorfismo de Nucleótido Simple , Distribución Aleatoria , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Nat Commun ; 5: 5515, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25463264

RESUMEN

Homozygous or compound heterozygous frameshift mutations in MYBPC3 encoding cardiac myosin-binding protein C (cMyBP-C) cause neonatal hypertrophic cardiomyopathy (HCM), which rapidly evolves into systolic heart failure and death within the first year of life. Here we show successful long-term Mybpc3 gene therapy in homozygous Mybpc3-targeted knock-in (KI) mice, which genetically mimic these human neonatal cardiomyopathies. A single systemic administration of adeno-associated virus (AAV9)-Mybpc3 in 1-day-old KI mice prevents the development of cardiac hypertrophy and dysfunction for the observation period of 34 weeks and increases Mybpc3 messenger RNA (mRNA) and cMyBP-C protein levels in a dose-dependent manner. Importantly, Mybpc3 gene therapy unexpectedly also suppresses accumulation of mutant mRNAs. This study reports the first successful long-term gene therapy of HCM with correction of both haploinsufficiency and production of poison peptides. In the absence of alternative treatment options except heart transplantation, gene therapy could become a realistic treatment option for severe neonatal HCM.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/genética , Proteínas Portadoras/genética , Terapia Genética/métodos , ARN Mensajero/metabolismo , Animales , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/terapia , Proteínas Portadoras/metabolismo , Dependovirus , Técnicas de Sustitución del Gen , Homocigoto , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...