Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
NMR Biomed ; : e5216, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39099162

RESUMEN

PURPOSE: To develop and validate a data acquisition scheme combined with a motion-resolved reconstruction and dictionary-matching-based parameter estimation to enable free-breathing isotropic resolution self-navigated whole-liver simultaneous water-specific T 1 $$ {\mathrm{T}}_1 $$ ( wT 1 $$ {\mathrm{wT}}_1 $$ ) and T 2 $$ {\mathrm{T}}_2 $$ ( wT 2 $$ {\mathrm{wT}}_2 $$ ) mapping for the characterization of diffuse and oncological liver diseases. METHODS: The proposed data acquisition consists of a magnetization preparation pulse and a two-echo gradient echo readout with a radial stack-of-stars trajectory, repeated with different preparations to achieve different T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ contrasts in a fixed acquisition time of 6 min. Regularized reconstruction was performed using self-navigation to account for motion during the free-breathing acquisition, followed by water-fat separation. Bloch simulations of the sequence were applied to optimize the sequence timing for B 1 $$ {B}_1 $$ insensitivity at 3 T, to correct for relaxation-induced blurring, and to map T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ using a dictionary. The proposed method was validated on a water-fat phantom with varying relaxation properties and in 10 volunteers against imaging and spectroscopy reference values. The performance and robustness of the proposed method were evaluated in five patients with abdominal pathologies. RESULTS: Simulations demonstrate good B 1 $$ {B}_1 $$ insensitivity of the proposed method in measuring T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ values. The proposed method produces co-registered wT 1 $$ {\mathrm{wT}}_1 $$ and wT 2 $$ {\mathrm{wT}}_2 $$ maps with a good agreement with reference methods (phantom: wT 1 = 1 . 02 wT 1,ref - 8 . 93 ms , R 2 = 0 . 991 $$ {\mathrm{wT}}_1=1.02\kern0.1em {\mathrm{wT}}_{1,\mathrm{ref}}-8.93\kern0.1em \mathrm{ms},{R}^2=0.991 $$ ; wT 2 = 1 . 03 wT 2,ref + 0 . 73 ms , R 2 = 0 . 995 $$ {\mathrm{wT}}_2=1.03\kern0.1em {\mathrm{wT}}_{2,\mathrm{ref}}+0.73\kern0.1em \mathrm{ms},{R}^2=0.995 $$ ). The proposed wT 1 $$ {\mathrm{wT}}_1 $$ and wT 2 $$ {\mathrm{wT}}_2 $$ mapping exhibits good repeatability and can be robustly performed in patients with pathologies. CONCLUSIONS: The proposed method allows whole-liver wT 1 $$ {\mathrm{wT}}_1 $$ and wT 2 $$ {\mathrm{wT}}_2 $$ quantification with high accuracy at isotropic resolution in a fixed acquisition time during free-breathing.

2.
J Nucl Med ; 65(8): 1244-1249, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991748

RESUMEN

177Lu-DOTATATE therapy is an effective treatment for advanced neuroendocrine tumors, despite its dose-limiting hematotoxicity. Herein, the significance of off-target splenic irradiation is unknown. Our study aims to identify predictive markers of peptide receptor radionuclide therapy-induced leukopenia. Methods: We retrospectively analyzed blood counts and imaging data of 88 patients with histologically confirmed, unresectable metastatic neuroendocrine tumors who received 177Lu-DOTATATE treatment at our institution from February 2009 to July 2021. Inclusion criterium was a tumor uptake equivalent to or greater than that in the liver on baseline receptor imaging. We excluded patients with less than 24 mo of follow-up and those patients who received fewer than 4 treatment cycles, additional therapies, or blood transfusions during follow-up. Results: Our study revealed absolute and relative white blood cell counts and relative spleen volume reduction as independent predictors of radiation-induced leukopenia at 24 mo. However, a 30% decline in spleen volume 12 mo after treatment most accurately predicted patients proceeding to leukopenia at 24 mo (receiver operating characteristic area under the curve of 0.91, sensitivity of 0.93, and specificity of 0.90), outperforming all other parameters by far. Conclusion: Automated splenic volume assessments demonstrated superior predictive capabilities for the development of leukopenia in patients undergoing 177Lu-DOTATATE treatment compared with conventional laboratory parameters. The reduction in spleen size proves to be a valuable, routinely available, and quantitative imaging-based biomarker for predicting radiation-induced leukopenia. This suggests potential clinical applications for risk assessment and management.


Asunto(s)
Leucopenia , Tumores Neuroendocrinos , Octreótido , Compuestos Organometálicos , Receptores de Péptidos , Bazo , Humanos , Femenino , Leucopenia/etiología , Masculino , Bazo/diagnóstico por imagen , Bazo/efectos de la radiación , Persona de Mediana Edad , Octreótido/análogos & derivados , Octreótido/uso terapéutico , Octreótido/efectos adversos , Estudios Retrospectivos , Anciano , Tumores Neuroendocrinos/radioterapia , Tumores Neuroendocrinos/diagnóstico por imagen , Receptores de Péptidos/metabolismo , Compuestos Organometálicos/efectos adversos , Compuestos Organometálicos/uso terapéutico , Tamaño de los Órganos , Adulto , Biomarcadores , Anciano de 80 o más Años
3.
Nat Med ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965432

RESUMEN

Clinical decision-making is one of the most impactful parts of a physician's responsibilities and stands to benefit greatly from artificial intelligence solutions and large language models (LLMs) in particular. However, while LLMs have achieved excellent performance on medical licensing exams, these tests fail to assess many skills necessary for deployment in a realistic clinical decision-making environment, including gathering information, adhering to guidelines, and integrating into clinical workflows. Here we have created a curated dataset based on the Medical Information Mart for Intensive Care database spanning 2,400 real patient cases and four common abdominal pathologies as well as a framework to simulate a realistic clinical setting. We show that current state-of-the-art LLMs do not accurately diagnose patients across all pathologies (performing significantly worse than physicians), follow neither diagnostic nor treatment guidelines, and cannot interpret laboratory results, thus posing a serious risk to the health of patients. Furthermore, we move beyond diagnostic accuracy and demonstrate that they cannot be easily integrated into existing workflows because they often fail to follow instructions and are sensitive to both the quantity and order of information. Overall, our analysis reveals that LLMs are currently not ready for autonomous clinical decision-making while providing a dataset and framework to guide future studies.

4.
Insights Imaging ; 15(1): 124, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825600

RESUMEN

OBJECTIVES: Achieving a consensus on a definition for different aspects of radiomics workflows to support their translation into clinical usage. Furthermore, to assess the perspective of experts on important challenges for a successful clinical workflow implementation. MATERIALS AND METHODS: The consensus was achieved by a multi-stage process. Stage 1 comprised a definition screening, a retrospective analysis with semantic mapping of terms found in 22 workflow definitions, and the compilation of an initial baseline definition. Stages 2 and 3 consisted of a Delphi process with over 45 experts hailing from sites participating in the German Research Foundation (DFG) Priority Program 2177. Stage 2 aimed to achieve a broad consensus for a definition proposal, while stage 3 identified the importance of translational challenges. RESULTS: Workflow definitions from 22 publications (published 2012-2020) were analyzed. Sixty-nine definition terms were extracted, mapped, and semantic ambiguities (e.g., homonymous and synonymous terms) were identified and resolved. The consensus definition was developed via a Delphi process. The final definition comprising seven phases and 37 aspects reached a high overall consensus (> 89% of experts "agree" or "strongly agree"). Two aspects reached no strong consensus. In addition, the Delphi process identified and characterized from the participating experts' perspective the ten most important challenges in radiomics workflows. CONCLUSION: To overcome semantic inconsistencies between existing definitions and offer a well-defined, broad, referenceable terminology, a consensus workflow definition for radiomics-based setups and a terms mapping to existing literature was compiled. Moreover, the most relevant challenges towards clinical application were characterized. CRITICAL RELEVANCE STATEMENT: Lack of standardization represents one major obstacle to successful clinical translation of radiomics. Here, we report a consensus workflow definition on different aspects of radiomics studies and highlight important challenges to advance the clinical adoption of radiomics. KEY POINTS: Published radiomics workflow terminologies are inconsistent, hindering standardization and translation. A consensus radiomics workflow definition proposal with high agreement was developed. Publicly available result resources for further exploitation by the scientific community.

5.
MAGMA ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743376

RESUMEN

PURPOSE: To investigate the effect of respiratory motion in terms of signal loss in prostate diffusion-weighted imaging (DWI), and to evaluate the usage of partial Fourier in a free-breathing protocol in a clinically relevant b-value range using both single-shot and multi-shot acquisitions. METHODS: A controlled breathing DWI acquisition was first employed at 3 T to measure signal loss from deep breathing patterns. Single-shot and multi-shot (2-shot) acquisitions without partial Fourier (no pF) and with partial Fourier (pF) factors of 0.75 and 0.65 were employed in a free-breathing protocol. The apparent SNR and ADC values were evaluated in 10 healthy subjects to measure if low pF factors caused low apparent SNR or overestimated ADC. RESULTS: Controlled breathing experiments showed a difference in signal coefficient of variation between shallow and deep breathing. In free-breathing single-shot acquisitions, the pF 0.65 scan showed a significantly (p < 0.05) higher apparent SNR than pF 0.75 and no pF in the peripheral zone (PZ) of the prostate. In the multi-shot acquisitions in the PZ, pF 0.75 had a significantly higher apparent SNR than 0.65 pF and no pF. The single-shot pF 0.65 scan had a significantly lower ADC than single-shot no pF. CONCLUSION: Deep breathing patterns can cause intravoxel dephasing in prostate DWI. For single-shot acquisitions at a b-value of 800 s/mm2, any potential risks of motion-related artefacts at low pF factors (pF 0.65) were outweighed by the increase in signal from a lower TE, as shown by the increase in apparent SNR. In multi-shot acquisitions however, the minimum pF factor should be larger, as shown by the lower apparent SNR at low pF factors.

7.
J Nucl Med ; 65(7): 1151-1159, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38782455

RESUMEN

Radiomics features can reveal hidden patterns in a tumor but usually lack an underlying biologic rationale. In this work, we aimed to investigate whether there is a correlation between radiomics features extracted from [18F]FDG PET images and histologic expression patterns of a glycolytic marker, monocarboxylate transporter-4 (MCT4), in pancreatic cancer. Methods: A cohort of pancreatic ductal adenocarcinoma patients (n = 29) for whom both tumor cross sections and [18F]FDG PET/CT scans were available was used to develop an [18F]FDG PET radiomics signature. By using immunohistochemistry for MCT4, we computed density maps of MCT4 expression and extracted pathomics features. Cluster analysis identified 2 subgroups with distinct MCT4 expression patterns. From corresponding [18F]FDG PET scans, radiomics features that associate with the predefined MCT4 subgroups were identified. Results: Complex heat map visualization showed that the MCT4-high/heterogeneous subgroup was correlating with a higher MCT4 expression level and local variation. This pattern linked to a specific [18F]FDG PET signature, characterized by a higher SUVmean and SUVmax and second-order radiomics features, correlating with local variation. This MCT4-based [18F]FDG PET signature of 7 radiomics features demonstrated prognostic value in an independent cohort of pancreatic cancer patients (n = 71) and identified patients with worse survival. Conclusion: Our cross-modal pipeline allows the development of PET scan signatures based on immunohistochemical analysis of markers of a particular biologic feature, here demonstrated on pancreatic cancer using intratumoral MCT4 expression levels to select [18F]FDG PET radiomics features. This study demonstrated the potential of radiomics scores to noninvasively capture intratumoral marker heterogeneity and identify a subset of pancreatic ductal adenocarcinoma patients with a poor prognosis.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Anciano , Transportadores de Ácidos Monocarboxílicos/metabolismo , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Tomografía de Emisión de Positrones , Proteínas Musculares/metabolismo , Radiofármacos , Tomografía de Emisión de Positrones , Radiómica
8.
Bioengineering (Basel) ; 11(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38671723

RESUMEN

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death. Recent studies have underlined the importance of non-contrast-enhanced chest CT scans not only for emphysema progression quantification, but for correlation with clinical outcomes as well. As about 40 percent of the 300 million CT scans per year are contrast-enhanced, no proper emphysema quantification is available in a one-stop-shop approach for patients with known or newly diagnosed COPD. Since the introduction of spectral imaging (e.g., dual-energy CT scanners), it has been possible to create virtual non-contrast-enhanced images (VNC) from contrast-enhanced images, making it theoretically possible to offer proper COPD imaging despite contrast enhancing. This study is aimed towards investigating whether these VNC images are comparable to true non-contrast-enhanced images (TNC), thereby reducing the radiation exposure of patients and usage of resources in hospitals. In total, 100 COPD patients with two scans, one with (VNC) and one without contrast media (TNC), within 8 weeks or less obtained by a spectral CT using dual-layer technology, were included in this retrospective study. TNC and VNC were compared according to their voxel-density histograms. While the comparison showed significant differences in the low attenuated volumes (LAVs) of TNC and VNC regarding the emphysema threshold of -950 Houndsfield Units (HU), the 15th and 10th percentiles of the LAVs used as a proxy for pre-emphysema were comparable. Upon further investigation, the threshold-based LAVs (-950 HU) of TNC and VNC were comparable in patients with a water equivalent diameter (DW) below 270 mm. The study concludes that VNC imaging may be a viable option for assessing emphysema progression in COPD patients, particularly those with a normal body mass index (BMI). Further, pre-emphysema was generally comparable between TNC and VNC. This approach could potentially reduce radiation exposure and hospital resources by making additional TNC scans obsolete.

9.
NMR Biomed ; 37(9): e5147, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38561247

RESUMEN

Partial Fourier encoding is popular in single-shot (ss) diffusion-weighted (DW) echo planar imaging (EPI) because it enables a shorter echo time (TE) and, hence, improves the signal-to-noise-ratio. Motion during diffusion encoding causes k-space shifting and dispersion, which compromises the quality of the homodyne reconstruction. This work provides a comprehensive understanding of the artifacts in homodyne reconstruction of partial Fourier ss-DW-EPI data in the presence of motion-induced phase and proposes the motion-induced phase-corrected homodyne (mpc-hdyne) reconstruction method to ameliorate these artifacts. Simulations with different types of motion-induced phase were performed to provide an understanding of the potential artifacts that occur in the homodyne reconstruction of partial Fourier ss-DW-EPI data. To correct for the artifacts, the mpc-hdyne reconstruction is proposed. The algorithm recenters k-space, updates the partial Fourier factor according to detected global k-space shifts, and removes low-resolution nonlinear phase before the conventional homodyne reconstruction. The mpc-hdyne reconstruction is tested on both simulation and in vivo data. Motion-induced phase can cause signal overestimation, worm artifacts, and signal loss in partial Fourier ss-DW-EPI data with the conventional homodyne reconstruction. Simulation and in vivo data showed that the proposed mpc-hdyne reconstruction ameliorated artifacts, yielding higher quality DW images compared with conventional homodyne reconstruction. Based on the understanding of the artifacts in homodyne reconstruction of partial Fourier ss-DW-EPI data, the mpc-hdyne reconstruction was proposed and showed superior performance compared with the conventional homodyne reconstruction on both simulation and in vivo data.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Análisis de Fourier , Hígado , Movimiento (Física) , Humanos , Hígado/diagnóstico por imagen , Hígado/cirugía , Algoritmos , Artefactos , Simulación por Computador , Procesamiento de Imagen Asistido por Computador/métodos
10.
Commun Med (Lond) ; 4(1): 46, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486100

RESUMEN

BACKGROUND: Artificial intelligence (AI) models are increasingly used in the medical domain. However, as medical data is highly sensitive, special precautions to ensure its protection are required. The gold standard for privacy preservation is the introduction of differential privacy (DP) to model training. Prior work indicates that DP has negative implications on model accuracy and fairness, which are unacceptable in medicine and represent a main barrier to the widespread use of privacy-preserving techniques. In this work, we evaluated the effect of privacy-preserving training of AI models regarding accuracy and fairness compared to non-private training. METHODS: We used two datasets: (1) A large dataset (N = 193,311) of high quality clinical chest radiographs, and (2) a dataset (N = 1625) of 3D abdominal computed tomography (CT) images, with the task of classifying the presence of pancreatic ductal adenocarcinoma (PDAC). Both were retrospectively collected and manually labeled by experienced radiologists. We then compared non-private deep convolutional neural networks (CNNs) and privacy-preserving (DP) models with respect to privacy-utility trade-offs measured as area under the receiver operating characteristic curve (AUROC), and privacy-fairness trade-offs, measured as Pearson's r or Statistical Parity Difference. RESULTS: We find that, while the privacy-preserving training yields lower accuracy, it largely does not amplify discrimination against age, sex or co-morbidity. However, we find an indication that difficult diagnoses and subgroups suffer stronger performance hits in private training. CONCLUSIONS: Our study shows that - under the challenging realistic circumstances of a real-life clinical dataset - the privacy-preserving training of diagnostic deep learning models is possible with excellent diagnostic accuracy and fairness.


Artificial intelligence (AI), in which computers can learn to do tasks that normally require human intelligence, is particularly useful in medical imaging. However, AI should be used in a way that preserves patient privacy. We explored the balance between maintaining patient data privacy and AI performance in medical imaging. We use an approach called differential privacy to protect the privacy of patients' images. We show that, although training AI with differential privacy leads to a slight decrease in accuracy, it does not substantially increase bias against different age groups, genders, or patients with multiple health conditions. However, we notice that AI faces more challenges in accurately diagnosing complex cases and specific subgroups when trained under these privacy constraints. These findings highlight the importance of designing AI systems that are both privacy-conscious and capable of reliable diagnoses across patient groups.

11.
Int J Colorectal Dis ; 39(1): 21, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273097

RESUMEN

PURPOSE: Sigmoid diverticulitis is a disease with a high socioeconomic burden, accounting for a high number of left-sided colonic resections worldwide. Modern surgical scheduling relies on accurate prediction of operation times to enhance patient care and optimize healthcare resources. This study aims to develop a predictive model for surgery duration in laparoscopic sigmoid resections, based on preoperative CT biometric and demographic patient data. METHODS: This retrospective single-center cohort study included 85 patients who underwent laparoscopic sigmoid resection for diverticular disease. Potentially relevant procedure-specific anatomical parameters recommended by a surgical expert were measured in preoperative CT imaging. After random split into training and test set (75% / 25%) multiclass logistic regression was performed and a Random Forest classifier was trained on CT imaging parameters, patient age, and sex in the training cohort to predict categorized surgery duration. The models were evaluated in the test cohort using established performance metrics including receiver operating characteristics area under the curve (AUROC). RESULTS: The Random Forest model achieved a good average AUROC of 0.78. It allowed a very good prediction of long (AUROC = 0.89; specificity 0.71; sensitivity 1.0) and short (AUROC = 0.81; specificity 0.77; sensitivity 0.56) procedures. It clearly outperformed the multiclass logistic regression model (AUROC: average = 0.33; short = 0.31; long = 0.22). CONCLUSION: A Random Forest classifier trained on demographic and CT imaging biometric patient data could predict procedure duration outliers of laparoscopic sigmoid resections. Pending validation in a multicenter study, this approach could potentially improve procedure scheduling in visceral surgery and be scaled to other procedures.


Asunto(s)
Laparoscopía , Bosques Aleatorios , Humanos , Estudios de Cohortes , Laparoscopía/métodos , Estudios Retrospectivos , Resultado del Tratamiento
12.
NMR Biomed ; 37(5): e5097, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38269568

RESUMEN

PURPOSE: Liver T1 mapping techniques typically require long breath holds or long scan time in free-breathing, need correction for B 1 + inhomogeneities and process composite (water and fat) signals. The purpose of this work is to accelerate the multi-slice acquisition of liver water selective T1 (wT1) mapping in a single breath hold, improving the k-space sampling efficiency. METHODS: The proposed continuous inversion-recovery (IR) Look-Locker methodology combines a single-shot gradient echo spiral readout, Dixon processing and a dictionary-based analysis for liver wT1 mapping at 3 T. The sequence parameters were adapted to obtain short scan times. The influence of fat, B 1 + inhomogeneities and TE on the estimation of T1 was first assessed using simulations. The proposed method was then validated in a phantom and in 10 volunteers, comparing it with MRS and the modified Look-Locker inversion-recovery (MOLLI) method. Finally, the clinical feasibility was investigated by comparing wT1 maps with clinical scans in nine patients. RESULTS: The phantom results are in good agreement with MRS. The proposed method encodes the IR-curve for the liver wT1 estimation, is minimally sensitive to B 1 + inhomogeneities and acquires one slice in 1.2 s. The volunteer results confirmed the multi-slice capability of the proposed method, acquiring nine slices in a breath hold of 11 s. The present work shows robustness to B 1 + inhomogeneities ( wT 1 , No B 1 + = 1.07 wT 1 , B 1 + - 45.63 , R 2 = 0.99 ) , good repeatability ( wT 1 , 2 ° = 1 . 0 wT 1 , 1 ° - 2.14 , R 2 = 0.96 ) and is in better agreement with MRS ( wT 1 = 0.92 wT 1 MRS + 103.28 , R 2 = 0.38 ) than is MOLLI ( wT 1 MOLLI = 0.76 wT 1 MRS + 254.43 , R 2 = 0.44 ) . The wT1 maps in patients captured diverse lesions, thus showing their clinical feasibility. CONCLUSION: A single-shot spiral acquisition can be combined with a continuous IR Look-Locker method to perform rapid repeatable multi-slice liver water T1 mapping at a rate of 1.2 s per slice without a B 1 + map. The proposed method is suitable for nine-slice liver clinical applications acquired in a single breath hold of 11 s.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Hígado/diagnóstico por imagen , Abdomen , Respiración , Fantasmas de Imagen , Reproducibilidad de los Resultados , Corazón
13.
Eur Radiol ; 34(4): 2437-2444, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37691079

RESUMEN

OBJECTIVES: MR imaging-based proton density fat fraction (PDFF) and T2* imaging has shown to be useful for the evaluation of degenerative changes in the spine. Therefore, the aim of this study was to investigate the influence of myelotoxic chemotherapy on the PDFF and T2* of the thoracolumbar spine in comparison to changes in bone mineral density (BMD). METHODS: In this study, 19 patients were included who had received myelotoxic chemotherapy (MC) and had received a MR imaging scan of the thoracolumbar vertebrates before and after the MC. Every patient was matched for age, sex, and time between the MRI scans to two controls without MC. All patients underwent 3-T MR imaging including the thoracolumbar spine comprising chemical shift encoding-based water-fat imaging to extract PDFF and T2* maps. Moreover, trabecular BMD values were determined before and after chemotherapy. Longitudinal changes in PDFF and T2* were evaluated and compared to changes in BMD. RESULTS: Absolute mean differences of PDFF values between scans before and after MC were at 8.7% (p = 0.01) and at -0.5% (p = 0.57) in the control group, resulting in significantly higher changes in PDFF in patients with MC (p = 0.008). BMD and T2* values neither showed significant changes in patients with nor in those without myelotoxic chemotherapy (p = 0.15 and p = 0.47). There was an inverse, yet non-significant correlation between changes in PDFF and BMD found in patients with myelotoxic chemotherapy (r = -0.41, p = 0.12). CONCLUSION: Therefore, PDFF could be a useful non-invasive biomarker in order to detect changes in the bone marrow in patients receiving myelotoxic therapy. CLINICAL RELEVANCE STATEMENT: Using PDFF as a non-invasive biomarker for early bone marrow changes in oncologic patients undergoing myelotoxic treatment may help enable more targeted countermeasures at commencing states of bone marrow degradation and reduce risks of possible fragility fractures. KEY POINTS: Quantifying changes in bone marrow fat fraction, as well as T2* caused by myelotoxic pharmaceuticals using proton density fat fraction, is feasible. Proton density fat fraction could potentially be established as a non-invasive biomarker for early bone marrow changes in oncologic patients undergoing myelotoxic treatment.


Asunto(s)
Médula Ósea , Protones , Humanos , Médula Ósea/diagnóstico por imagen , Columna Vertebral , Imagen por Resonancia Magnética/métodos , Biomarcadores , Tejido Adiposo/diagnóstico por imagen
14.
J Clin Med ; 12(23)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38068377

RESUMEN

Percutaneous CT-guided biopsy is a frequently performed procedure for the confirmation and molecular workup of hepatic metastases of pancreatic ductal adenocarcinoma (PDAC). Tumor necrosis of primary PDAC has shown a negative prognostic impact in recent studies. This study aims to examine predictability in CT scans and the prognostic impact of necrosis in hepatic metastases of PDAC. In this tertiary-center retrospective cohort study, we included 36 patients with hepatic metastases of PDAC who underwent CT-guided hepatic biopsies. Normalized attenuation of the biopsied metastasis was determined in venous phase contrast-enhanced planning scans obtained prior to biopsy by automatic, threshold-based 3D segmentation and manual, blinded 2D segmentation. A board-certified pathologist specialized in hepatic pathology histologically quantified the tumor necrosis and cellularity of the biopsy cylinders. We found a significant inverse-linear correlation between normalized attenuation and the fraction of necrosis (Pearson's r = 0.51, p < 0.001 for automatic 3D segmentation or Pearson's r = 0.52, p < 0.001 for manual 2D segmentation), whereas no correlation was found with tumor cellularity. Additionally, we discovered that patients with a fraction of necrosis ≥ 20% in metastases had a significantly shorter overall survival (p < 0.035). In summary, tumor necrosis of PDAC metastases can be estimated from contrast-enhanced CT scans, which could help to improve biopsy sample pattern planning. In addition, liver metastatic necrosis may serve as a prognostic biomarker in PDAC.

15.
Sci Rep ; 13(1): 19539, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945590

RESUMEN

When dealing with a newly emerging disease such as COVID-19, the impact of patient- and disease-specific factors (e.g., body weight or known co-morbidities) on the immediate course of the disease is largely unknown. An accurate prediction of the most likely individual disease progression can improve the planning of limited resources and finding the optimal treatment for patients. In the case of COVID-19, the need for intensive care unit (ICU) admission of pneumonia patients can often only be determined on short notice by acute indicators such as vital signs (e.g., breathing rate, blood oxygen levels), whereas statistical analysis and decision support systems that integrate all of the available data could enable an earlier prognosis. To this end, we propose a holistic, multimodal graph-based approach combining imaging and non-imaging information. Specifically, we introduce a multimodal similarity metric to build a population graph that shows a clustering of patients. For each patient in the graph, we extract radiomic features from a segmentation network that also serves as a latent image feature encoder. Together with clinical patient data like vital signs, demographics, and lab results, these modalities are combined into a multimodal representation of each patient. This feature extraction is trained end-to-end with an image-based Graph Attention Network to process the population graph and predict the COVID-19 patient outcomes: admission to ICU, need for ventilation, and mortality. To combine multiple modalities, radiomic features are extracted from chest CTs using a segmentation neural network. Results on a dataset collected in Klinikum rechts der Isar in Munich, Germany and the publicly available iCTCF dataset show that our approach outperforms single modality and non-graph baselines. Moreover, our clustering and graph attention increases understanding of the patient relationships within the population graph and provides insight into the network's decision-making process.


Asunto(s)
COVID-19 , Humanos , Pronóstico , Pulmón , Progresión de la Enfermedad , Hospitalización
16.
Tomography ; 9(5): 1839-1856, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37888738

RESUMEN

Cardiac motion causes unpredictable signal loss in respiratory-triggered diffusion-weighted magnetic resonance imaging (DWI) of the liver, especially inside the left lobe. The left liver lobe may thus be frequently neglected in the clinical evaluation of liver DWI. In this work, a data-driven algorithm that relies on the statistics of the signal in the left liver lobe to mitigate the motion-induced signal loss is presented. The proposed data-driven algorithm utilizes the exclusion of severely corrupted images with subsequent spatially dependent image scaling based on a signal-loss model to correctly combine the multi-average diffusion-weighted images. The signal in the left liver lobe is restored and the liver signal is more homogeneous after applying the proposed algorithm. Furthermore, overestimation of the apparent diffusion coefficient (ADC) in the left liver lobe is reduced. The proposed algorithm can therefore contribute to reduce the motion-induced bias in DWI of the liver and help to increase the diagnostic value of DWI in the left liver lobe.


Asunto(s)
Artefactos , Hígado , Estudios Retrospectivos , Reproducibilidad de los Resultados , Hígado/diagnóstico por imagen , Movimiento (Física) , Imagen de Difusión por Resonancia Magnética/métodos
17.
Pancreas ; 52(6): e315-e320, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37906550

RESUMEN

OBJECTIVES: Because IPMNs are potentially malignant, surveillance of IPMN is recommended by magnetic resonance imaging (MRI) and endoscopic ultrasound (EUS). The aim of the study was the evaluation of the concordance between EUS and MRI regarding cyst size. METHODS: Retrospective data analysis was done for patients with IPMN in whom EUS and MRI were performed simultaneously (≤60 days). The measured cyst size of both procedures was compared by Bland-Altman plots. Agreement of cyst localization and dilation of main pancreatic duct was assessed using kappa statistics. RESULTS: Fifty-nine cases were evaluated (median age, 71 years; 65% female; median time interval between both investigations, 17 days). The mean difference of IPMN maximal diameter between EUS and MRI was 0.55 mm with a prediction interval of -9.20 to +10.29 mm for 95% of the expected differences. There was strong interobserver agreement regarding cyst localization ( κ = 0.669, P = 1.06e -13 ) and the width of main pancreatic duct (<5, 5-9, and ≥10 mm; κ = 0.676 caput, κ = 0.823 corpus). CONCLUSIONS: We found a clinically relevant difference in cyst size comparing EUS and MRI. Therefore, alternating EUS and MRI for follow-up of the "worrisome feature" size growth is not reasonable.


Asunto(s)
Carcinoma Ductal Pancreático , Quistes , Neoplasias Intraductales Pancreáticas , Neoplasias Pancreáticas , Humanos , Femenino , Anciano , Masculino , Neoplasias Intraductales Pancreáticas/diagnóstico por imagen , Estudios Retrospectivos , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Páncreas/patología , Imagen por Resonancia Magnética , Endosonografía
18.
Cardiovasc Intervent Radiol ; 46(11): 1621-1631, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37759090

RESUMEN

PURPOSE: Evaluation of dual-layer spectral computed tomography (CT) for contrast enhancement during image-guided biopsy of liver lesions using virtual monoenergetic images (VMI) and virtual non-contrast (VNC) images. METHODS: Spectral CT data of 20 patients receiving CT-guided needle biopsy of focal liver lesions were used to generate VMI at energy levels from 40 to 200 keV and VNC images. Images were analyzed objectively regarding contrast-to-noise ratio between lesion center (CNRcent) or periphery (CNRperi) and normal liver parenchyma. Lesion visibility and image quality were evaluated on a 4-point Likert scale by two radiologists. RESULTS: Using VMI/VNC images, readers reported an increased visibility of the lesion compared to the conventional CT images in 18/20 cases. In 75% of cases, the highest visibility was derived by VMI-40. Showing all reconstructions simultaneously, VMI-40 offered the highest visibility in 75% of cases, followed by VNC in 12.5% of cases. Either CNRcent (17/20) or/and CNRperi (17/20) was higher (CNR increase > 50%) in 19/20 cases for VMI-40 or VNC images compared to conventional CT images. VMI-40 showed the highest CNRcent in 14 cases and the highest CNRperi in 12 cases. High image quality was present for all reconstructions with a minimum median of 3.5 for VMI-40 and VMI-50. CONCLUSIONS: When implemented in the CT scanner software, automated contrast enhancement of liver lesions during image-guided biopsy may facilitate the procedure.


Asunto(s)
Neoplasias Hepáticas , Tomografía Computarizada por Rayos X , Humanos , Relación Señal-Ruido , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Biopsia , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
19.
Metallomics ; 15(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37715341

RESUMEN

The gadolinium-based contrast agent Gadoxetic acid and the platinum-based antitumor agent Cisplatin were quantitatively imaged in liver and liver cancer (hepatocellular carcinoma, HCC) tissue of rats by means of laser ablation-inductively coupled plasma-mass spectrometry. HCC bearing rats simultaneously received a tail vein injection of the hepatocyte-specific magnetic resonance imaging contrast agent Gadoxetic acid and a transarterial injection of Cisplatin 15 min before sacrifice and liver removal. Resecting HCC with adjacent liver tissue allows the comparison of Gd, Pt, and endogenous elements like Fe, Cu, and Zn in the various tissue types. Region of interest analysis reveals lower concentrations of Gd in HCC and higher Gd content in the adjacent liver, fitting the selective uptake of Gadoxetic acid into hepatocytes. Furthermore, two malignancy grades and their possible impact on the Gadoxetic acid and Cisplatin uptake are compared. For this, four high grade (G3) and two moderate grade (G2) HCCs were analysed, including a control sample each. Gd concentrations were lower in HCC irrespective of the grade of dedifferentiation (G2, G3) compared to adjacent liver. Despite local arterial Cisplatin injection, concentrations of Pt were similar or also reduced in HCC compared to liver tissue. In addition, endogenous Fe, Cu, and Zn were quantified. While Zn was homogenously distributed, higher Fe concentrations were determined in liver tissue compared to HCC. Hotspots of Cu suggest a deregulated copper homeostasis in certain liver lesions. The Gd and Fe distributions are compared in detail with cellular alterations examined by hematoxylin and eosin staining.

20.
MAGMA ; 36(6): 957-974, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37436611

RESUMEN

OBJECTIVES: Development of a protocol for validation and quality assurance of filter-exchange imaging (FEXI) pulse sequences with well-defined and reproducible phantoms. MATERIALS AND METHODS: A FEXI pulse sequence was implemented on a 7 T preclinical MRI scanner. Six experiments in three different test categories were established for sequence validation, demonstration of the reproducibility of phantoms and the measurement of induced changes in the apparent exchange rate (AXR). First, an ice-water phantom was used to investigate the consistency of apparent diffusion coefficient (ADC) measurements with different diffusion filters. Second, yeast cell phantoms were utilized to validate the determination of the AXR in terms of repeatability (same phantom and session), reproducibility (separate but comparable phantoms in different sessions) and directionality of diffusion encodings. Third, the yeast cell phantoms were, furthermore, used to assess potential AXR bias because of altered cell density and temperature. In addition, a treatment experiment with aquaporin inhibitors was performed to evaluate the influence of these compounds on the cell membrane permeability in yeast cells. RESULTS: FEXI-based ADC measurements of an ice-water phantom were performed for three different filter strengths, showed good agreement with the literature value of 1.099 × 10-3 mm2/s and had a maximum coefficient of variation (CV) of 0.55% within the individual filter strengths. AXR estimation in a single yeast cell phantom and imaging session with five repetitions resulted in an overall mean value of (1.49 ± 0.05) s-1 and a CV of 3.4% between the chosen regions of interest. For three separately prepared phantoms, AXR measurements resulted in a mean value of (1.50 ± 0.04) s-1 and a CV of 2.7% across the three phantoms, demonstrating high reproducibility. Across three orthogonal diffusion directions, a mean value of (1.57 ± 0.03) s-1 with a CV of 1.9% was detected, consistent with isotropy of AXR in yeast cells. Temperature and AXR were linearly correlated (R2 = 0.99) and an activation energy EA of 37.7 kJ/mol was determined by Arrhenius plot. Furthermore, a negative correlation was found between cell density (as determined by the reference ADC/fe) and AXR (R2 = 0.95). The treatment experiment resulted in significantly decreased AXR values at different temperatures in the treated sample compared to the untreated control indicating an inhibiting effect. CONCLUSIONS: Using ice-water and yeast cell-based phantoms, a protocol for the validation of FEXI pulse sequences was established for the assessment of stability, repeatability, reproducibility and directionality. In addition, a strong dependence of AXR on cell density and temperature was shown. As AXR is an emerging novel imaging biomarker, the suggested protocol will be useful for quality assurance of AXR measurements within a study and potentially across multiple sites.


Asunto(s)
Hielo , Saccharomyces cerevisiae , Reproducibilidad de los Resultados , Imagen de Difusión por Resonancia Magnética/métodos , Agua , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...